%I #11 Sep 21 2013 07:29:59
%S 9,265926,9909504,28123200,34171875,9833523682950,189619679700,
%T 1489258878162739200,32051313254079000000000,231538926078057635957250,
%U 5980078350588060426240000
%N Least nonagonal (9-gonal) number that is the product of n nonagonal numbers greater than 1.
%H Lars Blomberg, <a href="/A225069/a225069.txt">Table of n, a(n) with solutions for n=1..11</a>
%e Let non(n) = n*(7n-5)/2. Then
%e a(1) = 9 = non(2).
%e a(2) = 265926 = non(276) = non(4) * non(41).
%e a(3) = 9909504 = non(1683) = non(3) * non(4) * non(51).
%e a(4) = 28123200 = non(2835) = non(3)^2 * non(5) * non(14).
%e a(5) = 34171875 = non(3125) = non(2)^2 * non(5)^3.
%e a(6) = 9833523682950 = non(1676180) = non(2)^3 * non(6) * non(55) * non(58).
%Y Cf. A001106 (9-gonal or nonagonal numbers).
%Y Cf. A212616, A212617, A225066-A225070 (3-, 5- to 10-gonal cases).
%K nonn,more
%O 1,1
%A _T. D. Noe_, May 01 2013
%E Corrected a(4)-a(6) and added a(7)-a(11) by _Lars Blomberg_, Sep 21 2013