login
Number of equivalence classes of n X n nonsingular matrices over GF(2), up to row and column permutation.
1

%I #43 Sep 26 2023 08:10:09

%S 1,2,7,51,885,44206,6843555,3373513302,5366987461839,

%T 27936547529976720,482768359608369460173,28090323163597327933723100,

%U 5574677486781815353253212392653,3816761688188495487649082049091445498,9106495173413853187392282303788066742174903

%N Number of equivalence classes of n X n nonsingular matrices over GF(2), up to row and column permutation.

%H Ludovic Schwob, <a href="/A224879/b224879.txt">Table of n, a(n) for n = 1..41</a>

%H Finley Freibert, <a href="http://dx.doi.org/10.3934/amc.2013.7.267">The Classification of Complementary Information Set Codes of Lengths 14 and 16</a>, Advances in Mathematics of Communications, Vol. 7, No. 3 (2013), 267-278.

%H N. Ilievska and D. Gligoroski, <a href="https://doi.org/10.1007/978-3-319-09879-1_31">Error-Detecting Code Using Linear Quasigroups</a>, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.

%H Ludovic Schwob, <a href="/A224879/a224879.txt">Sage program</a>

%Y A002884 counts all matrices nonsingular over GF(2).

%Y A116976 counts equivalence classes of binary matrices nonsingular over the reals.

%K nonn

%O 1,2

%A _Finley Freibert_, Jul 23 2013

%E a(8) from _Brendan McKay_, May 25 2020

%E a(9) onwards from _Ludovic Schwob_, Sep 25 2023