Maple-assisted proof of empirical formula for A224739

A $2 \times 2 \quad 0 \ldots 1$ matrix can have permanent 0,1 or 2 . There are 38 possible 2×3 matrices:
$>\mathrm{M}:=\operatorname{select}\left(\mathrm{m}->\mathrm{m}[1,1] *_{\mathrm{m}}[2,2]+\mathrm{m}[2,1] *_{\mathrm{m}}[1,2]=\mathrm{m}[1,2] *_{\mathrm{m}}[2,3]+\mathrm{m}[2\right.$,
2] $\mathrm{*m}_{\mathrm{m}}[1,3]$, $[\mathrm{seq}(\mathrm{seq}(\mathrm{seq}(\mathrm{seq}(\mathrm{seq}(\operatorname{seq}([[\mathrm{m}[1,1], \mathrm{m}[1,2], \mathrm{m}[1,3]],[\mathrm{m}[2$,
$1], m[2,2], m[2,3]]], m[1,1]=0.1), m[1,2]=0.1), m[1,3]=0 \ldots 1), m[2,1]$ $=0 . .1), m[2,2]=0 . .1), m[2,3]=0 . .1)]$);
nops (M23) ;
$M:=[[[0,0,0],[0,0,0]],[[1,0,0],[0,0,0]],[[0,1,0],[0,0,0]],[[1,1,0],[0,0,0]]$, $[[0,0,1],[0,0,0]],[[1,0,1],[0,0,0]],[[0,1,1],[0,0,0]],[[1,1,1],[0,0,0]],[[0$, $0,0],[1,0,0]],[[1,0,0],[1,0,0]],[[0,0,1],[1,0,0]],[[1,0,1],[1,0,0]],[[0,0$, $0],[0,1,0]],[[0,1,0],[0,1,0]],[[1,0,1],[0,1,0]],[[1,1,1],[0,1,0]],[[0,0,0]$, $[1,1,0]],[[1,0,1],[1,1,0]],[[0,1,1],[1,1,0]],[[0,0,0],[0,0,1]],[[1,0,0],[0$, $0,1]],[[0,0,1],[0,0,1]],[[1,0,1],[0,0,1]],[[0,0,0],[1,0,1]],[[1,0,0],[1,0$, $1]],[[0,1,0],[1,0,1]],[[1,1,0],[1,0,1]],[[0,0,1],[1,0,1]],[[1,0,1],[1,0,1]]$, $[[0,1,1],[1,0,1]],[[1,1,1],[1,0,1]],[[0,0,0],[0,1,1]],[[1,1,0],[0,1,1]],[[1$, $0,1],[0,1,1]],[[0,0,0],[1,1,1]],[[0,1,0],[1,1,1]],[[1,0,1],[1,1,1]],[[1,1$, 1], $[1,1,1]]]$

$$
\begin{equation*}
38 \tag{1}
\end{equation*}
$$

Let T be the 38×38 matrix such that $T_{i j}=1$ if the top two rows of a 3×3 matrix could be M_{i} and the bottom two rows M_{j}, the middle row being common to both, and all 2×2 permanents equal.

```
[> T:= Matrix(38,38, proc(i,j) if M[i][2] = M[j][1] and M[i][1,1]*M
    [i][2,2]+M[i][1,2]*M[i][2,1] = M[j][1,1]*M[j][2,2]+M[j][1,2]*M[j]
    [2,1] then 1 else 0 fi end proc):
```

Then $a_{n}=\operatorname{Trace}\left(T^{n-1}\right)=e^{T} T^{n-1} e$ where e is the column vector of all 1's. To check, here are the first few members of the sequence.
[> e:= Vector $(38,1): \operatorname{Tu}[0]:=e:$
for i from 1 to 30 do $T u[i]:=T$. Tu[i-1] od:
>> seq ($\left.e^{\wedge} \% \mathrm{~T} . \mathrm{Tu}[\mathrm{i}], i=0 . .30\right)$;
38, 152, 565, 2326, 9554, 40297, 170754, 728996, 3120401, 13387658, 57499978, 247151833, 1062764258, 4571134864, 19664166357, 84599301422, 363983008394, 1566063674345, 6738231845242, 28992616966540, 124747487937041, 536757282833410, 2309538038609730, $9937403210056409,42758363151913178,183979506812077592$, 791622190153982005, 3406171778623300486, 14655990653131948034, 63061433653454421097,271339185353421712434
[Here is the minimal polynomial of T.
> P:=LinearAlgebra:-MinimalPolynomial(T,z);

$$
\begin{equation*}
P:=z^{10}-6 z^{9}+41 z^{7}-25 z^{6}-86 z^{5}+60 z^{4}+51 z^{3}-36 z^{2} \tag{3}
\end{equation*}
$$

Thus a_{n} must satisfy the linear recurrence of order 10 corresponding to P. However, it seems it satisfies the empirical recurrence of order 7, corresponding to the following polynomial $Q(z)$.

$$
\begin{gather*}
>Q:=\mathbf{z}^{\wedge} 7-7 * \mathbf{z}^{\wedge} 6+7 * \mathbf{z}^{\wedge} 5+34 * \mathbf{z}^{\wedge} 4-59 * \mathbf{z}^{\wedge} 3-27 * \mathbf{z}^{\wedge} \mathbf{2}+87 * \mathbf{z}-36 ; \\
Q:=z^{7}-7 z^{6}+7 z^{5}+34 z^{4}-59 z^{3}-27 z^{2}+87 z-36 \tag{4}
\end{gather*}
$$

We check that $Q(z)$ divides $P(z)$, and let the quotient be $R(z)$.
$\lceil>R:=\operatorname{normal}(P / Q)$;

$$
\begin{equation*}
R:=(z+1) z^{2} \tag{5}
\end{equation*}
$$

If
$b_{n}=a_{n}-7 a_{n-1}+7 a_{n-2}+34 a_{n-3}-59 a_{n-4}-27 a_{n-5}+87 a_{n-6}-36 a_{n-7}=e^{T} Q(T) T^{n-8} e$ for $n \geq 8$, then b_{n} satisfies the recurrence of order 3 corresponding to $R(z)$, i.e. $b_{n+3}+b_{n+2}=0$.
To show that a_{n} satisfies the empirical recurrence for all $n \geq 8$, it suffices to check $b_{8}=b_{9}=b_{10}=0$.

$$
\left[\begin{array}{c}
>\operatorname{seq}\left(e^{\wedge} \circ \mathrm{T},(\mathrm{Tu}[\mathrm{n}-1]-7 * \mathrm{Tu}[\mathrm{n}-2]+7 * \mathrm{Tu}[\mathrm{n}-3]+34 * \mathrm{Tu}[\mathrm{n}-4]-59 * \mathrm{Tu}[\mathrm{n}-5]\right. \\
-27 * \mathrm{Tu}[\mathrm{n}-6]+87 \star \mathrm{Tu}[\mathrm{n}-7]-36 * \mathrm{Tu}[\mathrm{n}-8]), \quad \mathrm{n}=8.10) ; \\
0,0,0 \tag{6}
\end{array}\right.
$$

