The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A224577 T(n,k)=Number of (n+5)X(k+5) 0..1 matrices with each 6X6 subblock idempotent 9

%I #4 Apr 10 2013 18:39:04

%S 96608,18044,18044,16696,5668,16696,18868,5696,5696,18868,22096,6411,

%T 5896,6411,22096,25769,7034,6659,6659,7034,25769,28708,7386,7295,7394,

%U 7295,7386,28708,33705,7843,7884,8143,8143,7884,7843,33705,40120,9237

%N T(n,k)=Number of (n+5)X(k+5) 0..1 matrices with each 6X6 subblock idempotent

%C Table starts

%C .96608.18044.16696.18868.22096.25769.28708.33705.40120.50747.67088.91787.125249

%C .18044..5668..5696..6411..7034..7386..7843..9237.11797.15264.19346.23731..28733

%C .16696..5696..5896..6659..7295..7884..8294..9831.12556.16161.20310.25054..30119

%C .18868..6411..6659..7394..8143..8714..9164.10807.13624.17332.21731.26592..31785

%C .22096..7034..7295..8143..8880..9480..9946.11672.14594.18457.22982.27995..33345

%C .25769..7386..7884..8714..9480.10086.10561.12373.15413.19404.24072.29230..34734

%C .28708..7843..8294..9164..9946.10561.11032.12921.16072.20202.25024.30332..35979

%C .33705..9237..9831.10807.11672.12373.12921.14984.18329.22663.27712.33261..39146

%C .40120.11797.12556.13624.14594.15413.16072.18329.21920.26498.31808.37632..43791

%C .50747.15264.16161.17332.18457.19404.20202.22663.26498.31362.36961.43072..49535

%H R. H. Hardin, <a href="/A224577/b224577.txt">Table of n, a(n) for n = 1..1351</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -a(n-4) +2*a(n-6) -3*a(n-7) +4*a(n-8) -4*a(n-9) +3*a(n-10) -2*a(n-11) -2*a(n-14) +2*a(n-15) -2*a(n-16) +2*a(n-17) -a(n-18) +a(n-19) for n>30

%F k=2: a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7) -a(n-9) +a(n-10) -3*a(n-11) +3*a(n-12) -4*a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) +a(n-19) -a(n-20) +a(n-21) -a(n-22) +a(n-23) -a(n-24) for n>33

%F k=3: a(n) = 3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5) +2*a(n-6) -5*a(n-7) +6*a(n-8) -6*a(n-9) +4*a(n-10) -a(n-11) -a(n-12) +2*a(n-13) -2*a(n-14) +2*a(n-15) -a(n-16) for n>21

%F k=4: a(n) = 3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5) +2*a(n-6) -5*a(n-7) +6*a(n-8) -6*a(n-9) +4*a(n-10) -a(n-11) -a(n-12) +2*a(n-13) -2*a(n-14) +2*a(n-15) -a(n-16) for n>20

%F k=5: a(n) = 4*a(n-1) -6*a(n-2) +3*a(n-3) +3*a(n-4) -6*a(n-5) +5*a(n-6) -4*a(n-7) +3*a(n-8) -3*a(n-10) +3*a(n-11) -a(n-12) for n>16

%F k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

%F k=7: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

%F k=8: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

%F k=9: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

%F k=10: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

%F k=11: a(n) = 4*a(n-1) -6*a(n-2) +3*a(n-3) +3*a(n-4) -6*a(n-5) +5*a(n-6) -4*a(n-7) +3*a(n-8) -3*a(n-10) +3*a(n-11) -a(n-12) for n>16

%F k=12: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +2*a(n-6) -5*a(n-7) +4*a(n-8) -a(n-9) -a(n-12) +2*a(n-13) -a(n-14) for n>18

%F (note: the larger repeated k>=6 formula also works for k=11)

%e Some solutions for n=2 k=4

%e ..0..0..1..0..0..0..0..0..0....1..0..0..0..0..0..0..0..0

%e ..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

%e ..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

%e ..0..0..1..0..0..0..0..0..0....1..0..0..0..0..0..0..0..0

%e ..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

%e ..0..0..1..0..0..0..0..0..1....1..0..0..0..0..0..0..0..0

%e ..0..0..1..0..0..0..0..0..1....0..0..0..0..0..1..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Apr 10 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 07:54 EST 2023. Contains 367557 sequences. (Running on oeis4.)