login
The Gordon-Scantlebury index of the rooted tree with Matula-Goebel number n.
2

%I #20 Jun 26 2024 02:31:34

%S 0,0,1,1,2,2,3,3,3,3,3,4,4,4,4,6,4,5,6,5,5,4,5,7,5,5,6,6,5,6,4,10,5,5,

%T 6,8,7,7,6,8,5,7,6,6,7,6,6,11,7,7,6,7,10,9,6,9,8,6,5,9,8,5,8,15,7,7,7,

%U 7,7,8,8,12,7,8,8,9,7,8,6,12,10,6,6,10,7,7,7,9

%N The Gordon-Scantlebury index of the rooted tree with Matula-Goebel number n.

%C The Gordon-Scantlebury index of a tree is the number of paths of length 2 between distinct vertices of the tree. See the Trinajstic reference (p. 115). It is 1/2 of the Platt index of the tree (A198332).

%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

%D Emeric Deutsch, Rooted tree statistics from Matula numbers, Discrete Appl. Math., 160, 2012, 2314-2322.

%D N. Trinajstic, Chemical Graph Theory, Vol. II, CRC Press, Boca Raton, 1983.

%H Reinhard Zumkeller, <a href="/A224458/b224458.txt">Table of n, a(n) for n = 1..10000</a>

%H Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Tree statistics from Matula numbers</a>, arXiv preprint arXiv:1111.4288 [math.CO], 2011.

%H F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.

%H I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.

%H I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.

%H D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.

%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>

%F a(1)=0; if n=prime(t) (the t-th prime, t>=2), then a(n)=a(t)+G(t); if n=r*s (r,s>=2), then a(n)=a(r)+a(s)+G(r)*G(s); G(m) denotes the number of prime divisors of m counted with multiplicities.

%e a(7)=3 because the rooted tree with Matula-Goebel number 7 is Y; obviously, it has 3 paths of length 2.

%p with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then a(pi(n))+bigomega(pi(n)) else a(r(n))+a(s(n))+bigomega(r(n))*bigomega(s(n)) end if end proc: seq(a(n), n = 1 .. 100);

%t r[n_] := FactorInteger[n][[1, 1]];

%t s[n_] := n/r[n];

%t a[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, a[PrimePi[n]] + PrimeOmega[ PrimePi[n]], True, a[r[n]]+a[s[n]] + PrimeOmega[r[n]]*PrimeOmega[s[n]]];

%t Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 25 2024, after Maple code *)

%o (Haskell)

%o import Data.List (genericIndex)

%o a224458 n = genericIndex a224458_list (n - 1)

%o a224458_list = 0 : g 2 where

%o g x = y : g (x + 1) where

%o y | t > 0 = a224458 t + a001222 t

%o | otherwise = a224458 r + a224458 s + a001222 r * a001222 s

%o where t = a049084 x; r = a020639 x; s = x `div` r

%o -- _Reinhard Zumkeller_, Sep 03 2013

%Y Cf. A198332.

%Y Cf. A049084, A020639, A001222.

%K nonn

%O 1,5

%A _Emeric Deutsch_, Apr 14 2013