Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Apr 03 2013 17:35:05
%S 0,0,0,0,0,1,20,270,3142,34291,364462,3844051,40632886,432715409,
%T 4655417038,50667480496,558143676522,6223527776874,70228214538096,
%U 801705888742781,9254554670121572,107975393459449243,1272651313142352772,15145990284267530992
%N Number of permutations in S_n containing exactly one increasing subsequence of length 5.
%D B. Nakamura and D. Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, Adv. in Appl. Math. 50 (2013), 356-366.
%H B. Nakamura and D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/Gwilf.html">Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes</a>
%p # programs can be obtained from the Nakamura and Zeilberger link.
%Y Cf. A047889, A217057.
%K nonn
%O 0,7
%A _Brian Nakamura_, Apr 02 2013