%I
%S 130,4580,108625,2411246,54177872,1229044416,27957232796,636184842092,
%T 14476260508500,329391607167600,7494853316529036,170534677669656388,
%U 3880272541450452972,88290059453259690888,2008914306032132754800
%N Number of nX4 0..3 arrays with rows unimodal and antidiagonals nondecreasing
%C Column 4 of A224204
%H R. H. Hardin, <a href="/A224200/b224200.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 35*a(n-1) -347*a(n-2) +1689*a(n-3) -2986*a(n-4) -2311*a(n-5) +23532*a(n-6) -23864*a(n-7) -36468*a(n-8) +100464*a(n-9) +94080*a(n-10) for n>12
%e Some solutions for n=3
%e ..0..1..0..0....2..1..1..0....0..0..0..0....0..0..3..2....0..1..1..0
%e ..1..2..0..0....1..2..1..1....0..0..0..2....3..3..3..0....3..3..3..0
%e ..2..3..1..1....2..2..3..1....1..1..2..2....3..3..2..1....3..3..3..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 01 2013
|