login
T(n,k)=Number of nXk 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing
7

%I #4 Mar 30 2013 11:13:36

%S 3,9,9,22,54,22,46,218,218,46,86,698,1232,698,86,148,1915,5219,5219,

%T 1915,148,239,4690,18502,27246,18502,4690,239,367,10511,57911,115716,

%U 115716,57911,10511,367,541,21919,164781,428949,568107,428949,164781,21919,541

%N T(n,k)=Number of nXk 0..2 arrays with rows and columns unimodal and antidiagonals nondecreasing

%C Table starts

%C ...3.....9......22.......46........86........148.........239.........367

%C ...9....54.....218......698......1915.......4690.......10511.......21919

%C ..22...218....1232.....5219.....18502......57911......164781......433762

%C ..46...698....5219....27246....115716.....428949.....1442005.....4492529

%C ..86..1915...18502...115716....568107....2392915.....9064541....31777144

%C .148..4690...57911...428949...2392915...11231300....46853641...179545949

%C .239.10511..164781..1442005...9064541...46853641...212819499...880290006

%C .367.21919..433762..4492529..31777144..179545949...880290006..3903149379

%C .541.43045.1068664.13133871.104876598..646161612..3395883003.16032541293

%C .771.80334.2485274.36307595.329032264.2215310269.12434367863.62103561341

%H R. H. Hardin, <a href="/A224057/b224057.txt">Table of n, a(n) for n = 1..199</a>

%F Empirical: columns k=1..7 are polynomials of degree 4*k for n>0,0,1,3,5,7,9

%e Some solutions for n=3 k=4

%e ..0..0..0..1....2..2..1..0....0..0..0..0....1..1..0..0....0..1..0..0

%e ..1..1..1..0....2..2..1..0....2..0..0..0....1..2..0..0....1..2..0..0

%e ..1..2..1..0....2..2..0..0....2..1..1..1....2..2..2..1....2..2..0..0

%Y Column 1 is A223718

%Y Column 2 is A223927

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Mar 30 2013