login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223911 Number of tiered orders on n nodes (corrected version of A006860). 7

%I #42 Apr 03 2023 19:12:44

%S 1,1,3,13,111,1381,25623,678133,26169951,1447456261,114973232583,

%T 13034314621813,2103826463800911,481932523110975301,

%U 156356753093586913143,71729530379673590609653,46471511649877647638694591,42487759521494442057018000901,54781291469300608901184153800103

%N Number of tiered orders on n nodes (corrected version of A006860).

%H Joerg Arndt and Alois P. Heinz, <a href="/A223911/b223911.txt">Table of n, a(n) for n = 0..100</a> (terms n = 1..22 from Joerg Arndt)

%H D. Klarner, <a href="http://dx.doi.org/10.1016/0012-365X(86)90216-5">The number of tiered posets modulo six</a>, Discrete Math., 62 (1986), 295-297.

%F a(n) = sum(all composition C of n, M(C) * prod(j=1..m-1, f(C[j]*C[j+1]) ) ) where m is the number of parts of the current composition P, f(i,j) = sum(k=0..i, (-1)^(i-k) * binomial(i,k) * (2^k-1)^j ), and M(C) is the multinomial coefficient n!/prod(j=1..m, C[j]! ); see Pari code.

%F Klarner incorrectly gives prod(j=1..m-1, f(C[j]*C[m]) ) in the formula for a(n).

%F Conjecture: a(n) ~ c * 2^(n^2/4 + 3*n/2) / sqrt(n), where c = EllipticTheta[3, 0, 1/2^(1/4)] / (sqrt(Pi) * 2^(1/4)) = 2.020039... (based on the numerical analysis of 600 terms). - _Vaclav Kotesovec_, Apr 10 2015

%p f:= (i, j)-> add((-1)^(i-k)*binomial(i, k) *(2^k-1)^j, k=0..i):

%p b:= proc(n, i) option remember;

%p `if`(n=0, 1, add(b(n-j, j)/j!*f(i, j), j=1..n))

%p end:

%p a:= n-> n!*b(n, 1):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 23 2013

%t f[i_, j_] := Sum[(-1)^(i-k)*Binomial[i, k]*(2^k-1)^j, {k, 0, i}]; b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j]/j!*f[i, j], {j, 1, n}]]; a[n_] := n!*b[n, 1]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Apr 08 2015, after _Alois P. Heinz_ *)

%o (PARI)

%o f(m,n) = sum(k=0, m, (-1)^(m-k) * binomial(m,k) * (2^k-1)^n );

%o mn(n,V,m) = n! / prod(k=1, m, V[k]! ); /* multinomial of V[1..m] */

%o A223911(n)=

%o {

%o my(m=n, C=vector(n,j,1), z, t, ret);

%o while ( 1, /* for all compositions C[1..m] of n */

%o t = mn(n,C,m) * prod(j=1, m-1, f(C[j],C[j+1]) );

%o ret += t;

%o if ( m<=1, break() ); /* last composition? */

%o /* create next composition: */

%o C[m-1] += 1;

%o z = C[m];

%o C[m] = 1;

%o m += z - 2;

%o );

%o return(ret);

%o }

%o (PARI) \\ here f(m,n) is A218695.

%o f(m,n) = {sum(k=0, m, (-1)^(m-k) * binomial(m, k) * (2^k-1)^n )}

%o seq(n)={my(N=matrix(n,n,i,j, f(i,j)), T=vector(n), v=vector(n+1)); v[1]=1; for(r=1, n, T[r]=vector(r, k, (r==k) + binomial(r,k)*sum(i=1, r-k, T[r-k][i]*N[i,k])); v[1+r]=vecsum(T[r])); v} \\ _Andrew Howroyd_, Mar 29 2023

%Y Row sums of A361956.

%Y Cf. A218695, A361912 (unlabeled version).

%K nonn

%O 0,3

%A _Joerg Arndt_, Mar 29 2013, using information provided by _Joel B. Lewis_, _M. F. Hasler_ and _Michel Marcus_ in A006860.

%E Added a(0) = 1 by _Alois P. Heinz_, Jul 23 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 10:29 EDT 2024. Contains 371905 sequences. (Running on oeis4.)