%I #4 Mar 27 2013 04:41:47
%S 4,16,16,50,256,50,130,2500,2500,130,296,16900,61733,16900,296,610,
%T 87616,916107,916107,87616,610,1163,372100,9478535,26631193,9478535,
%U 372100,1163,2083,1352569,74824917,499583168,499583168,74824917,1352569,2083
%N T(n,k)=Number of nXk 0..3 arrays with rows, antidiagonals and columns unimodal
%C Table starts
%C ....4.......16..........50............130..............296.................610
%C ...16......256........2500..........16900............87616..............372100
%C ...50.....2500.......61733.........916107..........9478535............74824917
%C ..130....16900......916107.......26631193........499583168..........6754232986
%C ..296....87616.....9478535......499583168......15947472102........350182483445
%C ..610...372100....74824917.....6754232986.....350182483445......12025063773557
%C .1163..1352569...477860225....70657105931....5733827943118.....298630624023222
%C .2083..4338889..2571238699...600526842770...73972033945807....5692159574625373
%C .3544.12559936.12006271464..4295532642860..782389879664731...86933612444360250
%C .5776.33362176.49749360288.26553802745045.6990377642784235.1098959847553820404
%H R. H. Hardin, <a href="/A223762/b223762.txt">Table of n, a(n) for n = 1..127</a>
%F Empirical: columns k=1..5 are polynomials of degree 6*k for n>0,0,0,2,5
%e Some solutions for n=3 k=4
%e ..0..0..3..2....1..2..1..0....0..0..2..3....0..0..2..0....1..1..2..0
%e ..1..2..3..3....1..2..3..1....1..2..2..3....0..0..2..1....1..2..2..3
%e ..1..3..3..2....1..3..3..3....1..2..2..0....0..1..3..1....0..2..3..0
%Y Column 1 is A223659
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Mar 27 2013