%I #4 Mar 27 2013 04:37:53
%S 130,16900,916107,26631193,499583168,6754232986,70657105931,
%T 600526842770,4295532642860,26553802745045,144809883138117,
%U 708169972948277,3147072278088124,12848530197514221,48634231381716779,171996928938851128
%N Number of nX4 0..3 arrays with rows, antidiagonals and columns unimodal
%C Column 4 of A223762
%H R. H. Hardin, <a href="/A223758/b223758.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1224989653/34469355651846635520000)*n^24 + (49730855441/25852016738884976640000)*n^23 + (333257/5098722951168000)*n^22 + (26404629869/17030314057236480000)*n^21 + (15548385067/556091887583232000)*n^20 + (27895851209/69844076789760000)*n^19 + (413849303311/89633231880192000)*n^18 + (59360314638299/1344498478202880000)*n^17 + (77412356681/219118672281600)*n^16 + (251034590870443/105450861035520000)*n^15 + (898424139706433/66283398365184000)*n^14 + (16142406345876497/248562743869440000)*n^13 + (9698986684015669/37118703084503040)*n^12 + (278016346455319699/316352583106560000)*n^11 + (583356258129599/231760134144000)*n^10 + (1085396771654087/199717539840000)*n^9 + (179557726299779059/12804747411456000)*n^8 + (170830900302526489/48017802792960000)*n^7 + (27511312022727679/455355990835200)*n^6 - (2749822055519840233/88699552381440000)*n^5 - (122655525295200187/1222675534080000)*n^4 + (309022440348259051/271026410054400)*n^3 - (60572016509105077/18552403069200)*n^2 + (285878479129/70450380)*n - 1588 for n>2
%e Some solutions for n=3
%e ..0..0..0..1....0..0..1..1....1..0..0..0....0..0..1..2....1..1..2..0
%e ..1..2..2..2....0..2..2..2....1..0..0..0....1..2..2..0....0..2..2..1
%e ..0..1..1..1....1..1..1..0....1..1..3..3....1..2..0..0....0..1..2..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Mar 27 2013