OFFSET
1,2
COMMENTS
This is the complement of A223731. There an F. Halter-Koch reference is given.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
a(n) has no representation as a^2 + b^2 + c^2 with 0 < a <= b <= c and gcd(a,b,c) = 1.
Conjectured g.f.: (2*x^61 -x^60 +2*x^59 -x^58 -2*x^57 +x^43 +3*x^42 -3*x^41 +x^40 -2*x^39 +2*x^32 -x^31 +2*x^30 -x^29 -2*x^28 +x^23 +3*x^22 -3*x^21 +x^20 -2*x^19 +x^18 +2*x^16 -3*x^14 +x^12 +3*x^11 -x^10 +x^6 -x^5 +x^4 +2*x^2 +x +1)*x / (x^4 -x^3 -x +1). - Alois P. Heinz, Apr 06 2013
EXAMPLE
For a(1) up to a(7) there is no representation as sum of three nonzero squares.
a(8) = 12 because the only representation of 12 as a sum of nonzero squares is given by [a,b,c] = [2,2,2] = 2*[1,1,1], and this is not a primitive sum because gcd(2,2,2) = 2, not 1.
MATHEMATICA
notThreeSquaresQ[n_] := Select[ PowersRepresentations[n, 3, 2], Times @@ #1 != 0 && GCD @@ #1 == 1 & ] == {}; Select[Range[200], notThreeSquaresQ] (* Jean-François Alcover, Jun 21 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Apr 06 2013
STATUS
approved