%I #8 Nov 03 2014 01:54:46
%S 256,67584,19726336,5889851392,1771674009600,534392715870208,
%T 161366284997492736,48747995907588358144,14729174296327654211584,
%U 4450732984859801614811136,1344923124886673681620664320
%N Rolling cube footprints: number of n X 5 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal, diagonal or antidiagonal neighbor moves across a corresponding cube edge.
%C Column 5 of A223269.
%H R. H. Hardin, <a href="/A223266/b223266.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 448*a(n-1) -46080*a(n-2) +491520*a(n-3) +37748736*a(n-4) -637534208*a(n-5) +2147483648*a(n-6).
%e Some solutions for n=3:
%e ..0..3..5..2..5....0..3..5..4..3....0..3..5..2..1....0..3..5..3..5
%e ..0..3..5..1..5....0..3..0..4..2....0..3..1..3..4....0..3..4..3..5
%e ..0..3..0..4..0....0..1..0..1..2....0..3..1..2..4....0..3..1..3..1
%e Face neighbors:
%e 0.->.1.2.3.4
%e 1.->.0.2.3.5
%e 2.->.0.1.4.5
%e 3.->.0.1.4.5
%e 4.->.0.3.2.5
%e 5.->.1.3.4.2
%Y Cf. A223269.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 19 2013