%I #4 Mar 14 2013 21:37:35
%S 1,0,0,0,4,0,6,28,22,0,16,124,269,184,0,16,832,5624,6676,1222,0,40,
%T 6092,64346,244607,92011,9918,0,280,40960,1435644,9329085,10831996,
%U 2301900,73038,0,768,284702,17231678,361530918,713593552,488343248,32735497
%N T(n,k)=Number of nXk 0..2 arrays with exactly floor(nXk/2) elements equal to at least one horizontal, diagonal or antidiagonal neighbor, with new values introduced in row major 0..3 order
%C Table starts
%C .1........0...........0.............6............16.............16
%C .0........4..........28...........124...........832...........6092
%C .0.......22.........269..........5624.........64346........1435644
%C .0......184........6676........244607.......9329085......361530918
%C .0.....1222.......92011......10831996.....713593552....92719306520
%C .0.....9918.....2301900.....488343248..107964680902.24139544534018
%C .0....73038....32735497...22325434918.8477145578374
%C .0...571736...837862668.1030482342515
%C .0..4390202.12106093706
%C .0.34351802
%H R. H. Hardin, <a href="/A223114/b223114.txt">Table of n, a(n) for n = 1..71</a>
%e Some solutions for n=3 k=4
%e ..0..1..2..2....0..1..2..0....0..1..0..0....0..1..0..2....0..1..0..1
%e ..2..0..0..1....0..1..2..1....2..1..0..0....1..2..1..1....1..1..2..1
%e ..0..1..2..1....0..0..0..2....2..1..0..0....1..2..1..1....2..1..0..0
%Y Column 2 is A222885
%Y Row 1 is A222884
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_ Mar 14 2013