Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 23 2014 11:07:37
%S 1,2,12,2,40,2,630,2,560,2,132,2,6006,2,156,2,19040,2,610470,2,41800,
%T 2,276,2,39468,2,12,2,15080,2,31150350,2,1180480,2,12,2,215333118,2,
%U 444,2,23993200,2,101072790,2,39560,2,564,2,63069864,2,132,2,2120,2
%N Denominators of coefficients in asymptotic expansion of log z + psi(z+1/z), where psi is the digamma function.
%D Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
%H Vincenzo Librandi, <a href="/A222804/b222804.txt">Table of n, a(n) for n = 0..200</a>
%H M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., <a href="http://www.tulane.edu/~vhm/papers_html/val-zagier.pdf">The Zagier polynomials. Part II: Arithmetic properties of coefficients</a>, 2013
%e 0, -1/2, 11/12, 1/2, -13/40, -1/2, 29/630, 1/2, 109/560, -1/2, -67/132, 1/2, 6571/6006, ...
%t s = Series[Log[z] + PolyGamma[z+1/z], {z, Infinity, 53}] // Normal; CoefficientList[s + 2*Log[1/z], 1/z] // Denominator (* _Jean-François Alcover_, Mar 07 2014 *)
%Y Cf. A222803-A222806.
%K nonn,frac
%O 0,2
%A _N. J. A. Sloane_, Mar 10 2013
%E More terms from _Alois P. Heinz_, Mar 13 2013