login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of 1/16 - 1/(4 + 8*n)^2.
0

%I #26 Aug 30 2021 11:48:00

%S 1,18,50,49,81,242,338,225,289,722,882,529,625,1458,1682,961,1089,

%T 2450,2738,1521,1681,3698,4050,2209,2401,5202,5618,3025,3249,6962,

%U 7442,3969,4225,8978,9522,5041,5329,11250,11858,6241

%N Denominators of 1/16 - 1/(4 + 8*n)^2.

%C Denominators of the reduced fractions A064038(n)/a(n) = 0/1, 1/18, 3/50, 3/49, 5/81, 15/242, 21/338, 14/225, 18/289, ... .

%C Also, A064038 and a(n) are related to the sequence of period 4: repeat 1, 2, 2, 1.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (3,-6,10,-12,12,-10,6,-3,1).

%F a(n) = A014695(n) * A016754(n).

%F a(n) = 16*A064038(n+1) + A014695(n).

%F a(n) = A061042(4+8*n).

%F a(2n+2) - a(2n+1) = 32*A026741(n+1).

%F G.f.: ( -1 - 15*x - 2*x^2 + 3*x^3 - 66*x^4 + 3*x^5 - 2*x^6 - 15*x^7 - x^8 ) / ( (x-1)^3*(x^2+1)^3 ). - _R. J. Mathar_, Jun 04 2013

%F a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))*(2*n+1)^2/2. - _Wesley Ivan Hurt_, Oct 04 2018

%e a(0) = 1*1, a(1) = 2*9 = 18, a(2) = 2*25 = 50, a(3) = 1*49 = 49.

%e a(0) = 16*0 + 1 = 1, a(1) = 16*1 + 2 = 18, a(2) = 16*3 + 2 = 50, a(3) = 16*3 + 1 = 49.

%t Table[1/16-1/(4+8n)^2,{n,0,40}]//Denominator (* or *) LinearRecurrence[ {3,-6,10,-12,12,-10,6,-3,1},{1,18,50,49,81,242,338,225,289},40] (* _Harvey P. Dale_, Aug 30 2021 *)

%K nonn,frac,easy

%O 0,2

%A _Paul Curtz_, May 29 2013