login
Total sum of parts of multiplicity 10 in all partitions of n.
2

%I #10 May 29 2018 09:18:25

%S 1,0,1,1,2,2,4,4,7,8,14,16,23,28,40,49,67,82,110,135,180,220,286,349,

%T 448,548,694,846,1061,1290,1608,1948,2406,2909,3566,4300,5242,6298,

%U 7637,9149,11044,13189,15847,18872,22582,26817,31967,37858,44970,53116,62894

%N Total sum of parts of multiplicity 10 in all partitions of n.

%H Alois P. Heinz, <a href="/A222738/b222738.txt">Table of n, a(n) for n = 10..1000</a>

%F G.f.: (x^10/(1-x^10)^2-x^11/(1-x^11)^2)/Product_{i>=1}(1-x^i).

%F a(n) ~ 21 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (24200 * Pi^2). - _Vaclav Kotesovec_, May 29 2018

%p b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],

%p add((l->`if`(m=10, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))

%p end:

%p a:= n-> b(n, n)[2]:

%p seq(a(n), n=10..60);

%t b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[12]]; Table[a[n], {n, 10, 60}] (* _Jean-François Alcover_, Jan 24 2014, after _Alois P. Heinz_ *)

%Y Column k=10 of A222730.

%K nonn

%O 10,5

%A _Alois P. Heinz_, Mar 03 2013