%I
%S 1,0,0,0,6,0,6,32,32,6,20,520,892,520,20,20,4556,42492,42492,4556,20,
%T 70,57072,779875,3584673,779875,57072,70,685,594544,41383224,
%U 298478633,298478633,41383224,594544,685,2808,6958016,735555885,24650010932
%N T(n,k)=Number of nXk 0..3 arrays with exactly floor(nXk/2) elements equal to at least one kingmove neighbor, with new values introduced in row major 0..3 order
%C Table starts
%C ....1........0...........0.............6.............20.............20
%C ....0........6..........32...........520...........4556..........57072
%C ....0.......32.........892.........42492.........779875.......41383224
%C ....6......520.......42492.......3584673......298478633....24650010932
%C ...20.....4556......779875.....298478633....34850410918.14279931628806
%C ...20....57072....41383224...24650010932.14279931628806
%C ...70...594544...735555885.2035465167670
%C ..685..6958016.40786547448
%C .2808.77112256
%C .5370
%H R. H. Hardin, <a href="/A222608/b222608.txt">Table of n, a(n) for n = 1..59</a>
%e Some solutions for n=3 k=4
%e ..0..1..2..1....0..1..2..0....0..1..0..1....0..1..1..2....0..1..2..1
%e ..0..0..0..3....1..2..1..1....2..2..3..0....3..2..0..1....3..1..3..2
%e ..1..2..1..1....0..3..0..3....3..0..0..1....1..3..1..3....2..0..0..1
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_ Feb 26 2013
