Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 08 2022 08:46:04
%S 1,1,4,14,64,348,2216,16208,134096,1239280,12660992,141749472,
%T 1726315648,22725602368,321611064448,4869617171456,78557096872192,
%U 1345209881170176,24370892054807552,465737368803683840,9363489160183291904
%N Denominator sequence of the n-th convergent of the continued fraction 1/(1 + 2/(2 + 2/(3 + 2/(4 + ...
%C The corresponding numerator sequence is A222468.
%C a(n) = Q(n,2) with the denominator polynomials Q of A084950. All the given formulas follow from there. The limit of the continued fraction (0 + K_{k>=1} (2/k))/2 = 1/(1+2/(2+2/(3+2/(4+... is (1/2)*sqrt(2)*BesselI(1,2*sqrt(2))/BesselI(0,2*sqrt(2)) = 0.5631786198117... See A222466 for more digits.
%C For a combinatorial interpretation in terms of labeled Morse codes see a comment on A084950. Here each dash has label x=2, and the dots have label j if they are at position j. Labels are multiplied and all codes on [1,2,...,n] are summed.
%H Harvey P. Dale, <a href="/A222467/b222467.txt">Table of n, a(n) for n = 0..449</a>
%F Recurrence: a(n) = n*a(n-1) + 2*a(n-2), a(-1) = 0, a(0 ) =1, n >= 1.
%F As a sum: a(n) = Sum_{m =0..floor(n/2)} a(n-m,m)*2^m, n >= 0, with a(n,m) = (n!/m!)*binomial(n,m) = |A021009(n,m)| (Laguerre).
%F Explicit form: a(n) = 2*(w/2)^(n+1)*(BesselI(0,w)*BesselK(n+1,w) - BesselK(0,w)*BesselI(n+1,w)*(-1)^(n+1)) with w := -2*sqrt(2).
%F E.g.f.: (i*Pi*sqrt(2)/sqrt(1-z))*(BesselJ(1, 2*i*sqrt(2)*sqrt(1-z))*BesselY(0, 2*i*sqrt(2)) - BesselY(1, 2*i*sqrt(2)*sqrt(1-z))*BesselJ(0,2*i*sqrt(2))) with the imaginary unit i = sqrt(-1).
%F Asymptotics: lim_{n->infinity} a(n)/n! = BesselI(0,2*sqrt(2)) = 4.2523508795026...
%e a(4) = 4*a(3) + 2*a(2) = 4*14 + 2*4 = 64.
%e Continued fraction convergent: 1/(1+2/(2+2/(3+2/4))) = 9/16 = 36/64 = A222468(4)/a(4).
%e Morse code a(4) = 64 from the sum of all 5 labeled codes on [1,2,3,4], one with no dash, three with one dash and one with two dashes: 4! + (3*4 + 1*4 + 1*2)*2 + 2^2 = 64.
%t RecurrenceTable[{a[0]==a[1]==1,a[n]==n*a[n-1]+2*a[n-2]},a,{n,20}] (* _Harvey P. Dale_, Jul 06 2017 *)
%o (PARI) m=30; v=concat([1,4], vector(m-2)); for(n=3, m, v[n]=n*v[n-1] + 2*v[n-2]); concat([1], v) \\ _G. C. Greubel_, May 16 2018
%o (Magma) I:=[1,4]; [1] cat [n le 2 select I[n] else n*Self(n -1) + 2*Self(n-2): n in [1..30]]; // _G. C. Greubel_, May 16 2018
%Y Cf. A084950, A221913, A222468, A001040(n+1) (x=1), A058797 (x=-1).
%K nonn,easy
%O 0,3
%A _Gary Detlefs_ and _Wolfdieter Lang_, Mar 21 2013