login
Sum of neighbor maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 nX4 array
1

%I #4 Feb 18 2013 05:33:15

%S 16,248,3968,63488,1048320,16777216,268435072,4294961152,68702699520,

%T 1099511597056,17592186044416,281474976700416,4503599627206656,

%U 72057490958712832,1152921504603963392,18446744073709551616

%N Sum of neighbor maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 nX4 array

%C Column 4 of A222386

%H R. H. Hardin, <a href="/A222383/b222383.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 16*a(n-1) +8352*a(n-5) -133632*a(n-6) -18096384*a(n-10) +289542144*a(n-11) +2753724416*a(n-15) -44059590656*a(n-16) -143077146624*a(n-20) +2289234345984*a(n-21) +2757369004032*a(n-25) -44117904064512*a(n-26) -17592186044416*a(n-30) +281474976710656*a(n-31)

%e Some solutions for n=3

%e ..0..1..1..1....0..1..1..0....1..1..0..1....0..0..1..1....0..1..0..0

%e ..1..0..0..0....0..0..0..0....1..1..1..0....1..0..0..0....1..0..1..1

%e ..1..1..1..0....0..0..1..0....0..0..1..0....0..1..0..1....1..0..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 18 2013