The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222068 Decimal expansion of (1/16)*Pi^2. 24


%S 6,1,6,8,5,0,2,7,5,0,6,8,0,8,4,9,1,3,6,7,7,1,5,5,6,8,7,4,9,2,2,5,9,4,

%T 4,5,9,5,7,1,0,6,2,1,2,9,5,2,5,4,9,4,1,4,1,5,0,8,3,4,3,3,6,0,1,3,7,5,

%U 2,8,0,1,4,0,1,2,0,0,3,2,7,6,8,7,6,1,0,8,3,7,7,3,2,4,0,9,5,1,4,4,8,9,0,0

%N Decimal expansion of (1/16)*Pi^2.

%C Conjectured to be density of densest packing of equal spheres in four dimensions (achieved for example by the D_4 lattice).

%C From _Hugo Pfoertner_, Aug 29 2018: (Start)

%C Also decimal expansion of Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1), where d(n) is the number of divisors of n A000005(n).

%C Ramanujan's question 770 in the Journal of the Indian Mathematical Society (VIII, 120) asked "If d(n) denotes the number of divisors of n, show that d(1) - d(3)/3 + d(5)/5 - d(7)/7 + d(9)/9 - ... is a convergent series ...".

%C A summation of the first 2*10^9 terms performed by _Hans Havermann_ yields 0.6168503077..., which is close to (Pi/4)^2=0.616850275...

%C (End)

%C From _Robert Israel_, Aug 31 2018: (Start)

%C Modulo questions about rearrangement of conditionally convergent series, which I expect a more careful treatment would handle, Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1) should indeed be Pi^2/16.

%C Sum_{k>=0} (-1)^k d(2k+1)/(2k+1)

%C = Sum_{k>=0} Sum_{2i+1 | 2k+1} (-1)^k/(2k+1)

%C (letting 2k+1=(2i+1)(2j+1): note that k == i+j (mod 2))

%C = Sum_{i>=0} Sum_{j>=0} (-1)^(i+j)/((2i+1)(2j+1))

%C = (Sum_{i>=0} (-1)^i/(2i+1))^2 = (Pi/4)^2. (End)

%C Volume bounded by the surface (x+y+z)^2-2(x^2+y^2+z^2)=4xyz, the ellipson (see Wildberger, p. 287). - _Patrick D McLean_, Dec 03 2020

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.

%D S. D. Chowla, Solution and Remarks on Question 770, J. Indian Math. Soc. 17 (1927-28), 166-171.

%D S. Ramanujan, Coll. Papers, Chelsea, 1962, Question 770, page 333.

%D G. N. Watson, Solution to Question 770, J. Indian Math. Soc. 18 (1929-30), 294-298.

%H Vincenzo Librandi, <a href="/A222068/b222068.txt">Table of n, a(n) for n = 0..10000</a>

%H B. C. Berndt, Y. S. Choi, and S. Y. Kang, <a href="https://faculty.math.illinois.edu/~berndt/jims.ps">The problems submitted by Ramanujan to the Journal of Indian Math. Soc.</a>, in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q770, JIMS VIII).

%H J. H. Conway and N. J. A. Sloane, <a href="http://dx.doi.org/10.1007/BF02574051">What are all the best sphere packings in low dimensions?</a>, Discr. Comp. Geom., 13 (1995), 383-403.

%H Mathematics StackExchange, <a href="https://math.stackexchange.com/questions/2903015/sum-k-1k-frac-tau2k12k1">Sum_k (-1)^k tau(2k+1)/(2k+1)</a>.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D4.html">Home page for D_4 lattice</a>.

%H N. J. A. Sloane, <a href="/A093825/a093825.txt">Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (for n>3 the values are only conjectural)</a>.

%H N. J. Wildberger, <a href="https://www.researchgate.net/publication/266738365_Divine_Proportions_Rational_Trigonometry_to_Universal_geometry">Divine Proportions: Rational Trigonometry to Universal Geometry</a>, Wild Egg Books, Sydney 2005.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%F Equals A003881^2. - _Bruno Berselli_, Feb 11 2013

%F Equals A123092+1/2. - _R. J. Mathar_, Feb 15 2013

%F Equals integral_{x>0} x^2*log(x)/((1+x)^2*(1+x^2)). - _Jean-Fran├žois Alcover_, Apr 29 2013

%F Equals the Bessel moment integral_{x>0} x*I_0(x)*K_0(x)^3. - _Jean-Fran├žois Alcover_, Jun 05 2016

%e 0.6168502750680849136771556874922594459571...

%t RealDigits[N[Gamma[3/2]^4, 104]] (* _Fred Daniel Kline_, Feb 19 2017 *)

%t RealDigits[N[Pi^2/16, 100]][[1]] (* _Vincenzo Librandi_, Feb 20 2017 *)

%t Integrate[Boole[(x+y+z)^2-2(x^2+y^2+z^2)>4x y z],{x,0,1},{y,0,1},{z,0,1}] (* _Patrick D McLean_, Dec 03 2020 *)

%o (PARI) (Pi/4)^2 \\ _Charles R Greathouse IV_, Oct 31 2014

%o (MAGMA) pi:=Pi(RealField(110)); Reverse(Intseq(Floor((1/16)*10^100*pi^2))); // _Vincenzo Librandi_, Feb 20 2017

%Y Cf. A000005.

%Y Related constants: A020769, A020789, A093766, A093825, A222066, A222067, A222069, A222070, A222071, A222072, A222073, A222074, A222075.

%K nonn,cons

%O 0,1

%A _N. J. A. Sloane_, Feb 10 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 04:36 EDT 2021. Contains 343059 sequences. (Running on oeis4.)