login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222049 Difference between sums of largest parts of all partitions of n into odd number of parts and into even number of parts. 6
0, 1, 1, 2, 0, 2, -1, 2, -4, 4, -6, 5, -9, 8, -12, 14, -19, 19, -22, 26, -32, 38, -41, 48, -56, 65, -70, 84, -95, 107, -115, 133, -153, 172, -186, 212, -240, 264, -289, 325, -366, 400, -437, 485, -544, 597, -649, 714, -799, 869, -942, 1037, -1148, 1246, -1351 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..6000

FORMULA

a(n) = A222047(n) - A222048(n).

G.f.: Sum_{i>=0} i*x^i/Product_{j=1..i} (1 + x^j). - Ilya Gutkovskiy, Apr 13 2018

EXAMPLE

a(6) = -1 = (2+2+3+4+6) - (1+2+3+3+4+5) because the partitions of 6 into an odd number of parts are [2,1,1,1,1], [2,2,2], [3,2,1], [4,1,1], [6] and the partitions of 6 into an even number of parts are [1,1,1,1,1,1], [2,2,1,1], [3,1,1,1], [3,3], [4,2], [5,1].

MAPLE

b:= proc(n, i) option remember; [`if`(n=i, n, 0), 0]+

      `if`(i>n, [0, 0], b(n, i+1)+(l-> [l[2], l[1]])(b(n-i, i)))

    end:

a:= n-> (l->l[1]-l[2])(b(n, 1)):

seq(a(n), n=0..60);

MATHEMATICA

b[n_, i_] := b[n, i] = {If[n==i, n, 0], 0} + If[i>n, {0, 0}, b[n, i+1] + Reverse @ b[n-i, i]]; a[n_] :=  b[n, 1][[1]]-b[n, 1][[2]]; Table[a[n], {n, 0, 60}] (* Jean-Fran├žois Alcover, Feb 02 2017, translated from Maple *)

CROSSREFS

Cf. A211373, A222044, A222045, A222046, A222047, A222048.

Sequence in context: A076608 A068461 A130456 * A071497 A125939 A125942

Adjacent sequences:  A222046 A222047 A222048 * A222050 A222051 A222052

KEYWORD

sign

AUTHOR

Alois P. Heinz, Feb 06 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 16:13 EDT 2022. Contains 353706 sequences. (Running on oeis4.)