login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A221762 Numbers m such that 11*m^2 + 5 is a square. 6

%I

%S 1,2,22,41,439,818,8758,16319,174721,325562,3485662,6494921,69538519,

%T 129572858,1387284718,2584962239,27676155841,51569671922,552135832102,

%U 1028808476201,11015040486199,20524599852098,219748673891878,409463188565759

%N Numbers m such that 11*m^2 + 5 is a square.

%C Corresponding squares are: 16, 49, 5329, 18496, 2119936, 7360369, 843728209, 2929407376, ... (subsequence of A016778).

%C The Diophantine equation 11*x^2+k = y^2, for |k|<11, has integer solutions with the following k values:

%C k = -10, the nonnegative x values are in A198947;

%C k = -8, " 2*A075839;

%C k = -7, " A221763;

%C k = -2, " A075839;

%C k = 1, " A001084;

%C k = 4, " A075844;

%C k = 5, " this sequence;

%C k = 9, " 3*A001084.

%C Also, the Diophantine equation h*x^2+5 = y^2 has infinitely many integer solutions for h = 5, 11, 19, 20, 29, 31, 41, 44, 55, 59, ...

%C a(n+1)/a(n) tends alternately to (1+sqrt(11))^2/10 and (4+sqrt(11))^2/5.

%C a(n+2)/a(n) tends to A176395^2/2.

%H Bruno Berselli, <a href="/A221762/b221762.txt">Table of n, a(n) for n = 1..500</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,20,0,-1).

%F G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4).

%F a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11).

%F a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41.

%F a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n).

%F a(n+1) + a(n-1) = A198949(n), with a(0)=-1.

%F 2*a(n-1) - a(n) = A001084(n/2-1) for even n.

%p A221762:=proc(q)

%p local n;

%p for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n);

%p fi; od; end:

%p A221762(1000); # _Paolo P. Lava_, Feb 19 2013

%t LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24]

%t CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 18 2013 *)

%o (Maxima) makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24);

%o (MAGMA) m:=24; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4)));

%o (MAGMA) I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Aug 18 2013

%Y Cf. A001084, A075839, A075844, A198947, A198949, A221763.

%Y Cf. A049629 (numbers m such that 20*m^2 + 5 is a square), A075796 (numbers m such that 5*m^2 + 5 is a square).

%K nonn,easy

%O 1,2

%A _Bruno Berselli_, Jan 24 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 14:08 EST 2020. Contains 331280 sequences. (Running on oeis4.)