login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by something other than 1
11

%I #4 Jan 20 2013 04:57:52

%S 0,0,2,0,5,2,0,10,9,4,0,17,26,25,6,0,26,59,100,57,10,0,37,114,289,342,

%T 141,16,0,50,197,676,1293,1210,345,26,0,65,314,1369,3734,5913,4240,

%U 853,42,0,82,471,2500,8991,20944,26911,14898,2097,68,0,101,674,4225,19014

%N T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by something other than 1

%C Table starts

%C ...0.....0.......0........0.........0..........0...........0............0

%C ...2.....5......10.......17........26.........37..........50...........65

%C ...2.....9......26.......59.......114........197.........314..........471

%C ...4....25.....100......289.......676.......1369........2500.........4225

%C ...6....57.....342.....1293......3734.......8991.......19014........36497

%C ..10...141....1210.....5913.....20944......59705......145800.......317233

%C ..16...345....4240....26911....117104.....395641.....1116400......2754635

%C ..26...853...14898...122621....655198....2622817.....8550512.....23923281

%C ..42..2097...52306...558547...3665306...17385993....65485386....207761745

%C ..68..5149..183684..2544357..20505052..115249117...501533796...1804315029

%C .110.12633..645006.11590169.114711980..763966685..3841097940..15669633131

%C .178.31013.2264978.52796369.641737294.5064207645.29417832750.136083460405

%H R. H. Hardin, <a href="/A221573/b221573.txt">Table of n, a(n) for n = 1..2080</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-2)

%F k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-4)

%F k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)

%F k=4: a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5) for n>6

%F k=5: a(n) = 5*a(n-1) +3*a(n-2) +9*a(n-4) +6*a(n-5) +3*a(n-6)

%F k=6: a(n) = 7*a(n-1) -4*a(n-2) +6*a(n-3) +26*a(n-4) +10*a(n-5) +16*a(n-6) +12*a(n-8)

%F k=7: a(n) = 7*a(n-1) +4*a(n-2) +5*a(n-3) +20*a(n-4) +20*a(n-5) +23*a(n-6) -6*a(n-7) +3*a(n-8)

%F Empirical for row n:

%F n=2: a(n) = 1*n^2 + 1

%F n=3: a(n) = 1*n^3 - 1*n^2 + 3*n - 1

%F n=4: a(n) = 1*n^4 + 2*n^2 + 1

%F n=5: a(n) = 1*n^5 + 1*n^4 - 2*n^3 + 12*n^2 - 15*n + 9 for n>2

%F n=6: a(n) = 1*n^6 + 2*n^5 - 5*n^4 + 24*n^3 - 41*n^2 + 50*n - 31 for n>3

%F n=7: a(n) = 1*n^7 + 3*n^6 - 7*n^5 + 29*n^4 - 41*n^3 + 45*n^2 - 33*n + 19 for n>2

%e Some solutions for n=6 k=4

%e ..2....2....3....1....0....0....2....1....2....2....3....1....4....3....1....4

%e ..0....0....0....1....4....0....2....3....0....4....0....3....4....3....3....4

%e ..1....1....4....3....4....2....0....4....0....0....4....2....3....0....1....2

%e ..3....1....2....1....3....3....2....4....0....3....3....2....1....3....0....0

%e ..3....4....1....1....0....0....0....3....1....2....1....4....0....3....3....0

%e ..0....1....4....1....3....0....4....0....3....4....3....4....2....3....0....0

%Y Column 1 is A006355

%Y Row 2 is A002522

%Y Row 4 is A082044

%K nonn,tabl

%O 1,3

%A _R. H. Hardin_ Jan 20 2013