login
Square values taken by totient function phi(m) = A000010(m).
7

%I #17 Apr 29 2020 13:58:46

%S 1,4,16,36,64,100,144,196,256,324,400,576,676,784,900,1024,1296,1600,

%T 1764,1936,2304,2500,2704,2916,3136,3600,4096,4356,4624,4900,5184,

%U 5476,6400,7056,7744,8100,8836,9216,10000,10816,11664,12100,12544,12996,13456,14400,15376,15876

%N Square values taken by totient function phi(m) = A000010(m).

%H Charles R Greathouse IV, <a href="/A221285/b221285.txt">Table of n, a(n) for n = 1..10000</a>

%H W. D. Banks, J. B. Friedlander, C. Pomerance, and I. E. Shparlinski, <a href="http://www.math.missouri.edu/~bbanks/papers/2004_mult_struct_Euler_function.pdf">Multiplicative structure of values of the Euler function</a>, in High primes and misdemeanours: Lectures in honour of the sixtieth birthday of Hugh Cowie Williams, Fields Inst. Comm. 41 (2004), pp. 29-47.

%H Tristan Freiberg, Carl Pomerance, <a href="http://arxiv.org/abs/1410.8109">A note on square totients</a>, arXiv:1410.8109 [math.NT], 2014.

%H Paul Pollack and Carl Pomerance, <a href="http://www.math.dartmouth.edu/~carlp/squaretotients5.pdf">Square values of Euler's function</a>, Bulletin of the London Mathematical Society 46:2 (April 2014), pp. 403-414.

%F A002202 INTERSECTION A000290.

%F a(n) = A221284(n)^2.

%F Pollack & Pomerance show that n^2 log^.0126 n << a(n) << n^2 log^6 n.

%t inversePhiSingle[(m_)?EvenQ] := Module[{p, nmax, n}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; While[n <= nmax, If[EulerPhi[n] == m, Return[n]]; n++]; 0];

%t Reap[For[k = 1, k <= 200, k = k + If[k==1, 1, 2], If[inversePhiSingle[k^2] > 0, Print[k^2]; Sow[k^2]]]][[2, 1]] (* _Jean-François Alcover_, Dec 11 2018 *)

%o (PARI) is(n)=issquare(n) && istotient(n)

%Y Cf. A002202, A221284.

%K nonn

%O 1,2

%A _Charles R Greathouse IV_, Feb 05 2013