%I
%S 2,8,38,168,726,3088,12974,54000,223118,916552,3747670,15266264,
%T 61997350,251143328,1015242974,4097067104,16510377630,66454603032,
%U 267215894086,1073591223944,4310358413046,17295539333552,69365195543182
%N Equals one maps: number of n X 2 binary arrays indicating the locations of corresponding elements equal to exactly one of their horizontal, vertical and antidiagonal neighbors in a random 0..2 n X 2 array.
%C Column 2 of A220810.
%H R. H. Hardin, <a href="/A220806/b220806.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n1)  11*a(n2)  3*a(n3)  4*a(n4).
%F Empirical g.f.: 2*x*(1  3*x + 2*x^2  2*x^3) / ((1  4*x)*(1  3*x  x^2  x^3)).  _Colin Barker_, Mar 13 2018
%e Some solutions for n=3:
%e ..0..0....0..0....1..1....0..0....1..0....0..1....0..0....0..1....0..0....1..0
%e ..0..0....0..1....1..0....1..0....1..0....1..0....0..0....0..0....0..0....0..0
%e ..1..0....1..0....0..1....1..0....0..0....1..1....0..0....1..0....1..1....1..0
%Y Cf. A220810.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 22 2012
