The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220475 Chebyshev numbers C_v(n) for v=15/14: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(14*x/15)>=n*log(x), where theta(x)=sum_{prime p<=x} log p. 0
 307, 347, 563, 569, 733, 821, 1427, 1429, 1433, 1439, 1447, 1481, 1867, 1931, 1973, 2657, 2659, 2663, 2671, 2683, 3187, 3191, 3313, 3319, 3323, 3461, 3511, 3517, 4001, 4217, 4231, 4597, 4621, 4783, 5387, 5393, 5413, 5417, 5477, 5501, 5639, 5641, 5651, 6067, 6311, 6823, 6857, 7477, 7523, 7537 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms are primes. Up to a(100)=15013, all terms are (15/14)-Ramanujan numbers as in Shevelev's link, except for 821; the sequence is missing (15/4)-Ramanujan numbers 127 and 1423 and no others up to 15013. LINKS Table of n, a(n) for n=1..50. N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv 2011. N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13 V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4 Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785 FORMULA a(n) <= prime(32*(n+1)). MATHEMATICA k=14; xs=Table[{m, Ceiling[x/.FindRoot[(x (-1300+Log[x]^4))/Log[x]^5==(k+1) m, {x, f[(k+1) m]-1}, AccuracyGoal->Infinity, PrecisionGoal->20, WorkingPrecision->100]]}, {m, 1, 101}]; Table[{m, 1+NestWhile[#-1&, xs[[m]][[2]], (1/Log[#1]Plus@@Log[Select[Range[Floor[(k #1)/(k+1)]+1, #1], PrimeQ]]&)[#]>m&]}, {m, 1, 100}] (* Peter J. C. Moses, Dec 20 2012 *) (* Assuming range of x is from a(n) to 2*a(n) *) Clear[a, theta]; theta[x_] := theta[x] = Sum[Log[p], {p, Table[Prime[k], {k, 1, PrimePi[x]}]}] // N; a[0] = 293(* just to speed-up computation *); a[6] = 821(* the exception noted in comments *); a[n_] := a[ n] = (t = Table[an = Prime[pi]; Table[{an, x >= an && theta[x] - theta[14*x/15] >= n*Log[x]}, {x, an, 2*an}], {pi, PrimePi[a[n - 1]], 32*(n+1)}]; sp = t // Flatten[#, 1] & // Sort // Split[#, #1[[1]] == #2[[1]] &] &; Select[sp, And @@ (#[[All, 2]]) &] // First // First // First); Table[Print[a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 11 2013 *) CROSSREFS Cf. A220293, A220462, A220463, A220474. Sequence in context: A128477 A028680 A118282 * A282594 A050201 A142376 Adjacent sequences: A220472 A220473 A220474 * A220476 A220477 A220478 KEYWORD nonn AUTHOR Vladimir Shevelev, Charles R Greathouse IV and Peter J. C. Moses, Dec 15 2012 EXTENSIONS More terms from Jean-François Alcover, Feb 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 4 11:02 EST 2024. Contains 370528 sequences. (Running on oeis4.)