On The Sharpness of The Lower Bound

David Harden
OEIS Sequence A220470

November 26, 2018

Theorem . If $A 220470(n)=n^{2}+n$, then $n+1$ is a power of a prime. Furthermore, any G_{n} will have an elementary abelian normal subgroup K with $|K|=n+1$, and all nonidentity elements of K will be conjugate in G_{n}.

Proof. (From here on, we fix an arbitrary G_{n} and call it G for convenience.) First of all, note that $A 220470(1)=1<1^{2}+1$, so the condition implies $n>1$. Then, since $n>1$, $|G|=n^{2}+n<2 n^{2}$ so G cannot have two irreducible characters of degree n. By assumption, G has one irreducible character χ of degree n, so χ is unique and well-defined. Since χ is unique, it is invariant under the action of $\operatorname{Gal}\left(\mathbb{Q}\left(e^{\frac{2 \pi i}{n^{2}+n}}\right) / \mathbb{Q}\right)$ on character values. Therefore, for all $g \in G, \chi(g) \in \mathbb{Q}$. Since character values are algebraic integers, for all $g \in G, \chi(g) \in \mathbb{Z}$. The orthogonality relations tell us:

$$
\begin{align*}
1 & =<\chi, \chi> \tag{1}\\
& =\frac{1}{n^{2}+n} \sum_{g \in G} \chi(g)^{2} \quad \text { (since } \chi \text { is real-valued) } \tag{2}\\
n^{2}+n & =\sum_{g \in G} \chi(g)^{2} \tag{3}\\
n & =\sum_{g \in G \backslash\{1\}} \chi(g)^{2} \tag{4}
\end{align*}
$$

Since $\chi(1)=n>1, \chi$ is a nontrivial character. Then orthogonality relations also tell us (using χ_{1} to denote the trivial character):

$$
\begin{align*}
0 & =<\chi, \chi_{1}> \tag{5}\\
0 & =|G|<\chi, \chi_{1}> \tag{6}\\
& =\sum_{g \in G} \chi(g) \tag{7}\\
-n & =\sum_{g \in G \backslash\{1\}} \chi(g) \tag{8}
\end{align*}
$$

Then adding (4) and (8) gives us:

$$
\begin{equation*}
0=\sum_{g \in G \backslash\{1\}} \chi(g)^{2}+\chi(g) \tag{9}
\end{equation*}
$$

Since $\chi(g) \in \mathbb{Z}$ for all $g \in G$,

$$
\begin{equation*}
\chi(g)^{2}+\chi(g) \geq 0 \tag{10}
\end{equation*}
$$

Then (9) and (10) together imply that

$$
\begin{equation*}
\chi(g)^{2}+\chi(g)=0 \tag{11}
\end{equation*}
$$

for all $g \in G \backslash\{1\}$. This means that if $g \neq 1, \chi(g)=-1$ or $\chi(g)=0$.
Let $S=\{g \in G \mid \chi(g)=-1\}$ and $C=\{g \in G \mid \chi(g)=0\}$.
Now consider the regular character of G :

$$
\begin{equation*}
\chi_{r e g}(g)=|G| \delta_{1, g} \tag{12}
\end{equation*}
$$

Another bit of notation is in order. Let the number of conjugacy classes of G be c, so that the irreducible characters of G are $\chi_{1}, \ldots, \chi_{c}=\chi$. Then the decomposition of $\chi_{\text {reg }}$ into irreducibles is:

$$
\begin{equation*}
\chi_{\text {reg }}=\sum_{i=1}^{c} \chi_{i}(1) \chi_{i} \tag{13}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\chi_{\text {reg }}-n \chi=\sum_{i=1}^{c-1} \chi_{i}(1) \chi_{i} \tag{14}
\end{equation*}
$$

is a character of G.
$\chi_{\text {reg }}(1)-n \chi(1)=n^{2}+n-n^{2}=n$. If $g \in S$, then $\chi_{\text {reg }}(g)-n \chi(g)=0-n(-1)=n$. On the other hand, if $g \in C$, $\chi_{\text {reg }}(g)-n \chi(g)=0-n \cdot 0=0$, so $\operatorname{ker}\left(\chi_{\text {reg }}-n \chi\right)=\{1\} \cup S$. This is the normal subgroup K whose existence was claimed.
As to the value of $|K|$, note that $G \backslash\{1\}=S \cup C$. Since χ vanishes on C,

$$
\begin{equation*}
|S|=\frac{\sum_{g \in S} \chi(g)}{-1}=\frac{\sum_{g \in G \backslash\{1\}} \chi(g)}{-1}=\frac{-n}{-1}=n \tag{15}
\end{equation*}
$$

Then $|K|=1+|S|=n+1$, as claimed.
Since $\operatorname{ker}\left(\chi_{\text {reg }}-n \chi\right)=K$, every element of K acts trivially on each irreducible component of $\chi_{\text {reg }}-n \chi$. Therefore, for all i with $1 \leq i \leq c-1, K \subseteq \operatorname{ker}\left(\chi_{i}\right)$. Then χ_{i} is constant on S for all i, with $1 \leq i \leq c$. Since all irreducible characters of G are constant on S, all elements of S are conjugate in G. Then K is a normal subgroup of G in which all nonidentity elements are conjugate, so $\operatorname{Aut}(K)$ acts transitively on S. This means that $|K|=n+1$ is a power of a prime p, and K is an elementary abelian p-group.

