The smallest group with an irreducible representation of dimension 19

David Harden

The purpose of this note is to prove that if G is a finite group with an irreducible 19dimensional complex representation, then $|G| \geq 3420$. By the discussion on the OEIS page for sequence A220470, it suffices to prove that G has no irreducible 19-dimensional representation when $19||G|$ and $380 \leq|G| \leq 3401$.
Since $3420<19^{3}$, the Sylow 19-subgroups of any such G are abelian. The same comparison also implies that if the Sylow 19-subgroups of G have order 19^{2}, their index is less than 19 and therefore G has no irreducible 19-dimensional representation. Therefore we assume that $19 \||G|$ and write $|G|=19 \cdot n_{19}(G) \cdot\left|N_{G}(P) / P\right|$, where $P \in \operatorname{Syl}_{19}(G)$ and $\mathrm{n}_{19}(G)$ denotes the number of Sylow 19-subgroups of $G \cdot \mathrm{n}_{19}(G) \leq \frac{|G|}{19} \leq 179$ and $\mathrm{n}_{19}(G) \equiv 1(\bmod 19)$, so $\mathrm{n}_{19}(G)=1,20,39,58,77,96,115,134,153$, or 172.
If $96 \leq \mathrm{n}_{19}(G) \leq 172$, then $\frac{|G|}{19 \cdot \mathrm{n}_{19}(G)} \leq \frac{3401}{19 \cdot 96}<2$ so the Sylow 19-subgroups of G are selfnormalizing. Since they are abelian (in fact, cyclic), this means any Sylow 19-subgroup of G is in the center of its normalizer. Then Burnside's p-Complement Theorem says that G has a normal 19-complement N. If $d\left||N|\right.$ and $d \equiv 1(\bmod 19)$, then also $\left.\frac{|N|}{d}\right||N|$ and $\frac{|N|}{d} \equiv 1$ $(\bmod 19)$. Since $\min \left(d, \frac{|N|}{d}\right) \leq \sqrt{|N|}<14, \min \left(d, \frac{|N|}{d}\right) \equiv 1(\bmod 19)$ implies $\min \left(d, \frac{|N|}{d}\right)=1$, so that $d=1$ or $|N|$. Since N doesn't centralize a Sylow 19-subgroup of G, it follows that N must have a fixed-point-free automorphism of order 19. But no group of order $96=2^{5} \cdot 3$, $115=5 \cdot 23,134=2 \cdot 67,153=3^{2} \cdot 17$, or $172=2^{2} \cdot 43$ has a fixed-point-free automorphism of order 19. This contradiction means we henceforth assume that $\mathrm{n}_{19}(G) \leq 77$.
If $\mathrm{n}_{19}(G)=77$, then $\left|N_{G}(P) / P\right| \leq \frac{3401}{19.77}<3$, so $|G|=19 \cdot 77=1463$ or $19 \cdot 77 \cdot 2=2926$. If $|G|=2926$, then Isaacs' Theorem 1.35 implies G has a subgroup of index 2. Therefore, in either case, G has a subgroup of order 1463, but any group of order 1463 has a normal Sylow 7 -subgroup, the quotient by which is a cyclic group of order $209=11 \cdot 19$. Therefore any group of order 1463 is cyclic, giving us a contradiction.
If $\mathrm{n}_{19}(G)=58$, then $\left|N_{G}(P) / P\right| \leq \frac{3401}{19.58}<4$, so $|G|=1102,2204$, or 3306 . In any of these cases, G has a normal Sylow 29-subgroup Q, with $|G / Q|=38,76$, or 114. The normal Sylow 19-subgroup of G / Q lifts to a normal cyclic subgroup of order 551 in G, so that G has a unique Sylow 19-subgroup, contradicting our assumption.
If $\mathrm{n}_{19}(G)=39$, then $\left|N_{G}(P) / P\right| \leq \frac{3401}{19 \cdot 39}<5$, so $|G|=741,1482,2223$, or 2964 . In any of these cases, G has a normal Sylow 13-subgroup Q, with $|G / Q|=57,114,171$, or 228 . Then the normal Sylow 19-subgroup of G / Q lifts to a normal cyclic subgroup of order 247 in G, so that G has a unique Sylow 19-subgroup, contradicting our assumption.

If $\mathrm{n}_{19}(G)=20$, then $\left|N_{G}(P) / P\right| \leq \frac{3401}{19.20}<9$. Let G act by conjugation on its Sylow

19-subgroups. This action is transitive. In fact, it is doubly transitive, since any Sylow 19subgroup acts without fixed points, and therefore via a 19-cycle, on the others. Any group that acts doubly transitively on 20 points has an irreducible 19-dimensional representation, whose character is obtainable by subtracting the trivial character from the permutation character of the 20-point action. So replacing G by the group of permutations by which G acts on $\operatorname{Syl}_{19}(G)$ if necessary, we may assume G acts faithfully on $\operatorname{Syl}_{19}(G)$. Then we regard G as a permutation group on 20 points. Since a point stabilizer is a Sylow 19-subgroup normalizer and it acts faithfully on 19 points, it is isomorphic to a subgroup of $A G L_{1}(19)$. Therefore $\left|N_{G}(P) / P\right| \mid 18$, so $\left|N_{G}(P) / P\right|=1,2,3$, or 6 . G acts doubly transitively, and therefore primitively, on 20 points. Since 20 is not a power of a prime, G is unsolvable.
If $|G|=760$ or 2280 , then a point stabilizer is isomorphic, respectively, to a subgroup of order 38 or 114 in $A G L_{1}(19)$. An element of order 2 in a point stabilizer has cycle shape 2^{9} so it is an odd permutation. Therefore, if $|G|=760$ or $2280, G$ has a subgroup of index 2 . Any group of order 380 is solvable, giving a contradiction if $|G|=380$ or 760 . If $|G|=1140$ or 2280 , then G has a subgroup of order 1140 . The final contradiction when $\mathrm{n}_{19}(G)>1$ is therefore obtained by considering $|G|=1140$.
If $|G|=1140$, let Q be a Sylow 5 -subgroup of G. Since any 3-point stabilizer in G is trivial, the elements of order 5 in Q act as derangements on 20 points. Write $1140=5 \cdot \mathrm{n}_{5}(G)$. $\left|N_{G}(Q) / Q\right|$, where $\mathrm{n}_{5}(G)$ denotes the number of Sylow 5 -subgroups of G. $\left|N_{G}(Q) / Q\right| \mid 228$, but any element of order 19 in G that normalizes a Sylow 5 -subgroup of G centralizes it. But the subgroups of order 19 in S_{20} are self-centralizing, so no elements of order 19 are in $N_{G}(Q)$. Therefore $\left|N_{G}(Q) / Q\right| \mid 12$. But since $\left|N_{G}(Q) / Q\right| \equiv 3(\bmod 5)$, we must have $\left|N_{G}(Q) / Q\right|=3$. Then $\left|N_{G}(Q)\right|=15$ so $N_{G}(Q)$ is cyclic, but all elements of order 5 in G have cycle shape 5^{4} and all elements of order 3 in G have cycle shape 3^{6}. Since, on 20 points, no permutation of cycle shape 5^{4} can commute with a permutation of cycle shape 3^{6}, this is a contradiction. Henceforth we assume that $\mathrm{n}_{19}(G)=1$, which means P is a normal subgroup of G.

For most orders $|G|$ with $380 \leq|G| \leq 3401$ and $19 \||G|$, it is straightforward to use Sylow theorems and Isaacs' Theorem 1.35 to prove that if G has a normal Sylow 19-subgroup, then G has an abelian subgroup A with $[G: A]<19$. This implies G has no irreducible 19dimensional representation. Five difficult cases that arise, however, are given by $|G|=2052$, $|G|=2280,|G|=2736,|G|=3040$, and $|G|=3192$. These are the cases that are examined in detail in this note.

Theorem I. f G is a finite group with an irreducible 19-dimensional representation and $|G| \in\{2052,2280,2736,3040,3192\}$, then G has no subgroup of index 2 .

Proof. Suppose that G contains a subgroup K of index 2. Note that since $|K|=\frac{|G|}{2} \leq$ $1596<2052$, any group of order $|K|$ having a normal Sylow 19-subgroup has an abelian subgroup of index under 19.
Let χ be the character of an irreducible 19-dimensional representation of G. The preceding observation means that the restriction $\chi \downarrow K$ is reducible.
If χ is non-vanishing somewhere outside of K, then, by Theorem 20.12 of James and Liebeck,
the restriction $\chi \downarrow K$ is irreducible, for a contradiction.
If $\chi(g)=0$ for all $g \in G \backslash K$, then, again by Theorem 20.12 of James and Liebeck, $\chi \downarrow K=$ $\alpha+\beta$, where $\alpha(1)=\beta(1)$. This forces $\alpha(1)=\frac{19}{2}$, which is not an algebraic integer. This contradiction proves that G has no subgroup of index 2 .

Since the Sylow 19-subgroup P is a normal abelian subgroup of G, we get a homomorphism $\phi: G / P \rightarrow \operatorname{Aut}(P) \cong \mathbb{F}_{19}^{\times}$. If $\phi(G / P)$ has a subgroup of index 2 , that lifts to a subgroup of index 2 in G / P, which lifts to a subgroup of index 2 in G. Therefore $\phi(G / P) \subseteq\{1,4,5,6,7,9,11,16,17\}$, which is the Sylow 3-subgroup of \mathbb{F}_{19}^{\times}. This means P is centralized by any 3 'element of G.

1 Order 2052

Theorem I. f $|G|=2052$ and G has a normal Sylow 19-subgroup, then G does not have an irreducible 19-dimensional complex representation.

Proof. First of all, if G has an irreducible 19-dimensional representation, continuing the notation of the preceding discussion, we must have $\phi(G / P)=\{1,4,5,6,7,9,11,16,17\}$:

If not, then $|\phi(G / P)|$ has order 3 or 1 . Then let A be a subgroup of order $9 \operatorname{in} \operatorname{ker}(\phi)$. A is abelian and $A \subset \operatorname{ker}(\phi)$ means that the lift \bar{A} of A to G is an abelian subgroup of order 171 in G. Then $[G: \bar{A}]=12$ so G has no irreducible representation of dimension 19 .

Since G has no subgroup of index 2 , the Sylow 2-subgroups of G are non-cyclic. If $\operatorname{ker}(\phi)<G / P$ were abelian, then its lift to G would be an abelian subgroup of index 9 in G. This would mean G would have no irreducible 19-dimensional representation. Therefore $\operatorname{ker}(\phi)$ is a nonabelian group of order 12 with noncyclic Sylow 2-subgroups. This means $\operatorname{ker}(\phi) \cong D_{12}$ or A_{4}.
Now we flesh out a presentation for G to derive the contradiction. Let $\langle x\rangle$ be the Sylow 19-subgroup of G, and let K be the lift of $\operatorname{ker}(\phi)$ to G, so that $K \cong \operatorname{ker}(\phi) \times P$.
If $\operatorname{ker}(\phi) \cong A_{4}$, we write $K=<x, a, b, t \mid x^{19}=1, x a=a x, x b=b x, x t=t x, a^{2}=b^{2}=(a b)^{2}=$ $t^{3}=1, t^{-1} a t=b, t^{-1} b t=a b>$.
Let $z \in G$ be chosen so that $z^{-1} x z=x^{4}$, and z is a 3 -element of G. Then z does not have order 27 , since then z^{9} would be an element of order 3 in K. The only elements of order 3 in K are the conjugates of t and t^{2}, which act on $\{a, b, a b\}$ by conjugation via a 3 -cycle. So then z would have to act, via a permutation of order 27 , on $\{a, b, a b\}$ by conjugation. This is a contradiction because $\{a, b, a b\}$ is too small to admit such an action.
Let τ be a conjugate of t (not necessarily distinct from t) such that $<z, \tau>$ is a Sylow 3 -subgroup of G. Since conjugation through elements of $\langle\tau\rangle$ permutes $\{a, b, a b\}$ via every possible 3 -cycle, there is a unique $z^{\prime} \in\left\{z, z \tau, z \tau^{2}\right\}$ such that z^{\prime} centralizes $<a, b>$. Then $\tau \in K$ so z^{\prime} still conjugates x to x^{4}. Aut $\left(A_{4}\right) \cong S_{4}$, with the automorphisms fixing (individually) $a, b, a b \in<a, b, t>$ being the V generated by conjugations through those involutions. Since z^{\prime} centralizes $\langle a, b\rangle, z^{\prime}$ has order 9 , and V is a 2-group, conjugation through z^{\prime} has to induce the trivial automorphism on $\langle a, b, t\rangle$. So we have now established that $G=<a, b, t, x, z^{\prime}>\cong<a, b, t, x, z^{\prime} \mid a^{2}=b^{2}=(a b)^{2}=1, t^{3}=1, t^{-1} a t=b, t^{-1} b t=a b, x^{19}=$

1, $x a=a x, x b=b x, x t=t x,\left(z^{\prime}\right)^{9}=1,\left(z^{\prime}\right)^{-1} x z^{\prime}=x^{4}, z^{\prime} a=a z^{\prime}, z^{\prime} b=b z^{\prime}, z^{\prime} t=t z^{\prime}>\cong<$ $x, z^{\prime}>\times<a, b, t>$. Since G is isomorphic to the Cartesian product of smaller groups and neither of them has an irreducible 19-dimensional representation, the primality of 19 implies G has no such representation itself.

If $\operatorname{ker}(\phi) \cong D_{12}$, we write $K=<x, c, r \mid x^{19}=1, x c=c x, x r=r x, c^{6}=r^{2}=1, r c r=$ $c^{-1}>$.
Let $z \in G$ be chosen so that $z^{-1} x z=x^{4}$, and z is a 3 -element of G. Then z does not have order 27 , since then z^{9} would be an element of order 3 in K. The only elements of order 3 in K are c^{2} and c^{4}, which act on $r\langle c\rangle$ by conjugation via a disjoint product of two 3 -cycles. So then z would have to act, via a permutation of order 27 , on $r\langle c\rangle$ by conjugation. This is a contradiction because $r\langle c\rangle$ is too small to admit such an action.
Since $<c^{2}>$ is the unique Sylow 3 -subgroup of K, z normalizes it and therefore $\left.<z, c^{2}\right\rangle$ is a Sylow 3 -subgroup of G. Since conjugation through elements of $\left\langle c^{2}\right\rangle$ permutes $r<$ $c^{2}>$ via every possible 3 -cycle, there is a unique $z^{\prime} \in r<c^{2}>$ such that z^{\prime} centralizes $<r, c^{2}>$. Since $c^{2} \in K$, z^{\prime} still conjugates x to x^{4}. Then c^{3} is the only central element of order 2 in $\langle c, r\rangle$, so $\left\langle c^{3}\right\rangle$ char $\langle c, r\rangle \operatorname{char} K \triangleleft G$, so $\left.<c^{3}\right\rangle \triangleleft G$ and therefore $z^{\prime} c^{3}=c^{3} z^{\prime}$. Then z^{\prime} centralizes $\left\langle c^{2}, r, c^{3}>=<r, c>\right.$, and we have now established that $G=<c, r, x, z^{\prime}>\cong<c, r, x, z^{\prime} \mid c^{6}=r^{2}=1, r c r=c^{-1}, x^{19}=1, x c=c x, x r=r x,\left(z^{\prime}\right)^{9}=$ $1, z^{\prime} c=c z^{\prime}, z^{\prime} r=r z^{\prime},\left(z^{\prime}\right)^{-1} x z^{\prime}=x^{4}>\cong<x, z^{\prime}>\times<c, r>$. Since G is isomorphic to the Cartesian product of smaller groups and neither of them has an irreducible 19-dimensional representation, G has no such representation itself.

2 Order 2280

Theorem I. f $|G|=2280$ and G has a normal Sylow 19-subgroup, then G does not have an irreducible 19-dimensional complex representation.

Proof. $|G / P|=120$ and G / P has no subgroup of index 2.
If G / P is unsolvable, then $G / P \cong S_{5}, A_{5} \times C_{2}$, or $S L_{2}(5)$. Of these, only $S L_{2}(5)$ lacks a subgroup of index 2 . Since $S L_{2}(5)$ is a perfect group, we get the isomorphism $G \cong P \times G / P$. Since neither P nor G / P has an irreducible representation of dimension 19, G doesn't either. If G / P is solvable, then it has a Hall $\{2,5\}$-subgroup H, so that $|H|=40$. Let C be a cyclic subgroup of order $10 \mathrm{in} H$. The lift of C to G is a subgroup A of order 190 in G. Since $3 \nmid 190$, every element of A centralizes P and we obtain $A \cong P \times C$. Therefore A is an abelian subgroup of G of index 12, and G cannot have an irreducible 19-dimensional representation in this case.

3 Order 2736

Theorem I. f $|G|=2736$ and G has a normal Sylow 19-subgroup, then G does not have an irreducible 19-dimensional complex representation.

Proof. Let Q be a Sylow 2-subgroup of G / P. Let $N \triangleleft Q$ be chosen so that $|N|=4$. Then, since N is abelian, Q / N acts in a well-defined way on N by conjugation. Any 2-subgroup
of $\operatorname{Aut}(N)$ has order 2, while $|Q / N|=4$. Therefore there is a $y \in Q \backslash N$ such that $y N$ centralizes N and $y N$ has order 2 in Q / N. Then $A=N \cup y N$ is an abelian subgroup of order 8 in G / P. Since P is centralized by any 3^{\prime}-element of G, the lift of $A<G / P$ to G is an abelian subgroup of G. The order of this abelian subgroup of G is 152 , so its index in G is 18 , and G does not have an irreducible representation of dimension 19 in this case.

4 Order 3040

Theorem I. f $|G|=3040$ and G has a normal Sylow 19-subgroup, then G does not have an irreducible 19-dimensional complex representation.

Proof. Since $|G / P|=160$ and $3 \nmid 160$, any element of G centralizes P. Then we get the isomorphism $G \cong P \times G / P$, and neither P nor G / P has an irreducible representation of dimension 19. This means, as before, G cannot have an irreducible representation of dimension 19 , and we are done in this case.

5 Order 3192

Theorem I. f $|G|=3192$ and G has a normal Sylow 19-subgroup, then G does not have an irreducible 19-dimensional complex representation.

Proof. $|G / P|=168$ and G / P has no subgroup of index 2. Therefore, $G / P \cong G L_{3}(2), G / P$ has a normal subgroup of index 3 isomorphic to $C_{7} \times Q_{8}$, or G / P has a normal subgroup of index 3 isomorphic to $A G L_{1}\left(\mathbb{F}_{8}\right)$.
If $G / P \cong G L_{3}(2)$, then $G L_{3}(2)$ is a perfect group so $G \cong P \times G L_{3}(2)$ and, as before, G has no 19-dimensional irreducible representation.
If G / P has a normal subgroup of index 3 isomorphic to $C_{7} \times Q_{8}$, then, since 3^{\prime}-elements of G centralize P, that subgroup of index 3 lifts to a subgroup of G isomorphic to $C_{133} \times Q_{8}$. But all irreducible representations of the index 3 subgroup $C_{133} \times Q_{8}$ have dimension ≤ 2, so all irreducible representations of G have dimension ≤ 6, and G has no irreducible representation of dimension 19 in this case.

The remaining possibility is that G / P has a normal subgroup of index 3 isomorphic to $A G L_{1}\left(\mathbb{F}_{8}\right)$. As before, this lifts to a subgroup N of G for which $N \cong C_{19} \times A G L_{1}\left(\mathbb{F}_{8}\right)$. Also, $N \triangleleft G$ and $[G: N]=3$. Assume that G has an irreducible representation of dimension 19, with χ as its character.
Let $\chi \downarrow N$ be the restriction of χ to N. Let ψ be an irreducible character of N occurring in the decomposition of $\chi \downarrow N$ into irreducible characters of N, and let $\psi \uparrow G$ be the induction of ψ from N to G.
Then $<\chi \downarrow N, \psi>_{N}=<\chi, \psi \uparrow G>_{G}$ by Frobenius reciprocity. Since ψ is an irreducible constituent of $\chi \downarrow N,<\chi \downarrow N, \psi>_{N}$ is a positive integer. Therefore $<\chi, \psi \uparrow G>_{G}$ is a positive integer, being the multiplicity of χ in $\psi \uparrow G$. This multiplicity is bounded from above by $\frac{\psi \uparrow G(1)}{\chi(1)}=\frac{3 \psi(1)}{19}$, so $1 \leq \frac{3 \psi(1)}{19}$. Therefore $\frac{19}{3} \leq \psi(1) \leq 7$, so $\psi(1)=7$. Therefore every irreducible constituent of $\chi \downarrow N$ has degree 7 , which is a contradiction because $7 \nmid 19$.

