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The purpose of this note is to prove that if G is a finite group with an irreducible
17-dimensional complex representation, then |G| > 1751. By the discussion on the OEIS
page for sequence A220470, it suffices to prove that G has no irreducible 17-dimensional
representation when 17 | |G| and 306 < |G| < 1734. For all but three of these orders, such
a claim is easy to prove using Sylow theorems and Isaacs’ Theorem 1.35 (which is the s = 1
case of the preliminary theorem below). The three difficult cases are when |G| = 1632,
|G| = 612, and |G| = 1224. These are the cases that are examined in detail in this note.

1 One more preliminary result
In addition to the theorems cited there’s this:

Theorem 1. f GG is a finite group with a nontrivial cyclic Sylow 2-subgroup, then G has a
subgroup of index 2.

Proof. We write |G| = 2°t, where s is a nonnegative integer and ¢ is an odd integer. In fact,
since G has a nontrivial Sylow 2-subgroup, s is positive.

Let x be a generator of a Sylow 2-subgroup of GG. Let G act on itself by right-multiplication,
and we consider the action of z. All cycles of z have the same length, which is the order of
x, namely 2°. The number of cycles is then ‘g‘ = t, so x can be written as the product of
t(2° — 1) transpositions. Since t is odd and s is a positive integer, ¢(2° — 1) is odd and the

elements of G that act evenly on GG form a subgroup N of index 2 in G.
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2 Order 1632

Theorem I. f |G| = 1632, then G does not have an irreducible 17-dimensional complex
representation.

Proof. First of all, note that the only divisor d of % = 96 satisfying d = 1 (mod 17) is
d = 1. Therefore any group of order 1632 has a normal Sylow 17-subgroup P. If G has an
irreducible 17-dimensional representation, then G has a subgroup of index 2:



Suppose G does not have a subgroup of index 2. Then G/P does not have a subgroup
of index 2, since a subgroup of index 2 in G/P would lift to a subgroup of index 2 in G.

If G/ P has no subgroup of index 2, then it is generated by its elements of odd order, so it is
generated by its elements of order 3. Their preimages in G all centralize P because Aut(P)
is a 2-group. Since P is centralized by a set whose images in G/P generate G/P, P is a
central subgroup of G and we can decompose G as G = P x L, where L = G/P.

Now let @ be a Sylow 2-subgroup of L, and let N be a normal subgroup of @ with |N| = 4.
Then N is abelian, and |Aut(N)| = 2 or 6, so a Sylow 2-subgroup of Aut(N) has order 2.
Since N is abelian, an element of /N acts in a well-defined way by conjugation on N, giving
us a homomorphism ¢ : Q/N — Aut(N). Then |ker(¢)| = % >8 =4 soletyeq
be chosen so that yN is an element of order 2 in ker(¢). Then A = N UyN is an abelian
subgroup of order 8 in L, and G has an abelian subgroup isomorphic to P x A, which has in-
dex 12. This proves G does not have an irreducible 17-dimensional representation in this case.

So now let K be a subgroup of index 2 in GG, and let x be the character of an irreducible
17-dimensional representation of G. We consider cases depending on whether or not x van-
ishes outside of K. From Theorem 20.12 of James and Liebeck, we learn:

If x(g) # 0 for some g € G\ K, then the restriction y | K is irreducible. This is a contra-
diction because |K| = 816 and any group of order 816 has an abelian subgroup of index 16,
which rules out the existence of an irreducible character of degree 17.

If x(9) =0 for all g € G\ K, then the restriction x | K is reducible. Moreover, y = o + 3,

where (1) = B(1). This gives a contradiction because x(1) = 17 is odd. O
3 Order 612

Theorem I. f |G| = 612, then G does not have an irreducible 17-dimensional complex
representation.

Proof. The only divisors d of % = 36 satisfying d = 1 (mod 17) are d = 1 and 18, so the
number of Sylow 17-subgroups of G is either 1 or 18.

If G has just one Sylow 17-subgroup P, then a Sylow 3-subgroup of G/ P lifts to an abelian
subgroup of index 4 in G, preventing G from having an irreducible representation of dimen-
sion 17.

Now we wish to show that assuming G has 18 Sylow 17-subgroups leads to a contradiction:

If G has 18 Sylow 17-subgroups, G acts transitively on them by conjugation. Also, any
one of them acts without fixed points on the others, so any one of them acts via a 17-cycle
on the others. This means GG acts doubly transitively, and therefore primitively, on its Sylow
17-subgroups by conjugation. Then a Sylow 17-subgroup normalizer is a maximal subgroup
of index 18 in (. Since 18 is not a power of a prime, this implies G is not solvable.

By how many permutations does G act on its Sylow 17-subgroups? Since G acts doubly
transitively, this number is a multiple of 18 - 17 = 306. But any group of order 306 is solv-
able, so this number must be 612 and G must act faithfully. So we regard G as a permutation
group on 18 points.



A Sylow 17-subgroup normalizer in G is a group of order 34 that acts faithfully on 17 points,
so it must be dihedral. Then any 2-point stabilizer in G has a unique element of order 2,
which is a disjoint product of 8 2-cycles. Also, no element of GG, except the identity, has
more than 2 fixed points.
G has no derangements of order 2: a derangement of order 2 would be the product of 9
transpositions, so it would be an odd permutation. But G has no subgroup of index 2 be-
cause (G is unsolvable but all groups of order 306 are solvable.
Since G' has no subgroup of index 2, G can’t have a cyclic Sylow 2-subgroup. Therefore GG
has no elements of order 4.
Then the number of solutions to z* =1 in G is 1 + (128) = 154, but 154 is not a multiple of
4. This contradicts Theorem 9.1.2 from Hall, and the contradiction is established.

O

In fact, the above reasoning shows that any group of order 612 has a unique, and therefore
normal, Sylow 17-subgroup. Since all groups of order 36 are solvable, this establishes that
all groups of order 612 are solvable.

4 Order 1224

Theorem 1. f |G| = 1224, then G does not have an irreducible 17-dimensional complex
representation.

Proof. The only divisors d of % = 72 satisfying d = 1 (mod 17) are d = 1 and 18, so the
number of Sylow 17-subgroups of G is either 1 or 18.

If G has just one Sylow 17-subgroup P, then a Sylow 3-subgroup of G/ P lifts to an abelian
subgroup of index 8 in G, preventing G from having an irreducible representation of dimen-
sion 17.

Now we wish to show that assuming G has 18 Sylow 17-subgroups leads to a contradiction:

If G has 18 Sylow 17-subgroups, GG acts doubly transitively on them by conjugation, as
before. As before, this implies G is unsolvable.

By how many permutations does G act on its Sylow 17-subgroups? Since G acts doubly
transitively, this number is a multiple of 306. Also, this number must divide |G| = 1224, so
it must be 306, 612, or 1224. It cannot be 306 or 612 because all groups of those orders are
solvable. Therefore this number must be 1224 and GG must act faithfully. So we regard G as
a permutation group on 18 points.

A Sylow 17-subgroup normalizer in G is a group of order 68 that acts faithfully on 17 points,
so it must be isomorphic to a subgroup of index 4 in AGL;(17). Then any 2-point stabilizer
in G has a unique element of order 2 (a disjoint product of 8 2-cycles), and two elements of
order 4 (each of which is a disjoint product of 4 4-cycles). Also, no element of GG, except the
identity, has more than 2 fixed points.

G has no derangements of order 2, as before.

G has no elements of order 8, since then G would have cyclic Sylow 2-subgroups. If G' had
a subgroup of index 2, that subgroup would have order 612 and therefore be solvable, con-
tradicting the unsolvability of G.



G has no derangements of order 4:
Every cycle of a derangement = of order 4 has length 2 or 4. The points in a 4-cycle of
x are those which are in 2-cycles of 2. Since every element of order 2 in G is a disjoint
product of 8 2-cycles, there are 16 such points. Then the only possible cycle structure for a
derangement of order 4 in G is (4,4,4,4,2). But any permutation with that cycle structure is
an odd permutation, whose presence in GG would contradict the unsolvability of G.
Therefore all elements of order 2 or 4 in G have exactly 2 fixed points. Then the total number
of solutions to 28 = 1in G is 1 + (128) + 2(128) = 460, which is not a multiple of 8. This
contradicts Theorem 9.1.2 of the Hall reference, and establishes the desired contradiction.
O
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