# The smallest group with an irreducible representation of dimension 17 

David Harden

The purpose of this note is to prove that if $G$ is a finite group with an irreducible 17-dimensional complex representation, then $|G| \geq 1751$. By the discussion on the OEIS page for sequence A220470, it suffices to prove that $G$ has no irreducible 17-dimensional representation when $17||G|$ and $306 \leq|G| \leq 1734$. For all but three of these orders, such a claim is easy to prove using Sylow theorems and Isaacs' Theorem 1.35 (which is the $s=1$ case of the preliminary theorem below). The three difficult cases are when $|G|=1632$, $|G|=612$, and $|G|=1224$. These are the cases that are examined in detail in this note.

## 1 One more preliminary result

In addition to the theorems cited there's this:
Theorem I. f $G$ is a finite group with a nontrivial cyclic Sylow 2-subgroup, then $G$ has a subgroup of index 2 .

Proof. We write $|G|=2^{s} t$, where $s$ is a nonnegative integer and $t$ is an odd integer. In fact, since $G$ has a nontrivial Sylow 2-subgroup, $s$ is positive.
Let $x$ be a generator of a Sylow 2-subgroup of $G$. Let $G$ act on itself by right-multiplication, and we consider the action of $x$. All cycles of $x$ have the same length, which is the order of $x$, namely $2^{s}$. The number of cycles is then $\frac{|G|}{2^{s}}=t$, so $x$ can be written as the product of $t\left(2^{s}-1\right)$ transpositions. Since $t$ is odd and $s$ is a positive integer, $t\left(2^{s}-1\right)$ is odd and the elements of $G$ that act evenly on $G$ form a subgroup $N$ of index 2 in $G$.

## 2 Order 1632

Theorem I. f $|G|=1632$, then $G$ does not have an irreducible 17-dimensional complex representation.

Proof. First of all, note that the only divisor $d$ of $\frac{1632}{17}=96$ satisfying $d \equiv 1(\bmod 17)$ is $d=1$. Therefore any group of order 1632 has a normal Sylow 17 -subgroup $P$. If $G$ has an irreducible 17-dimensional representation, then $G$ has a subgroup of index 2 :

Suppose $G$ does not have a subgroup of index 2. Then $G / P$ does not have a subgroup of index 2 , since a subgroup of index 2 in $G / P$ would lift to a subgroup of index 2 in $G$.
If $G / P$ has no subgroup of index 2 , then it is generated by its elements of odd order, so it is generated by its elements of order 3 . Their preimages in $G$ all centralize $P$ because $A u t(P)$ is a 2-group. Since $P$ is centralized by a set whose images in $G / P$ generate $G / P, P$ is a central subgroup of $G$ and we can decompose $G$ as $G \cong P \times L$, where $L \cong G / P$.
Now let $Q$ be a Sylow 2-subgroup of $L$, and let $N$ be a normal subgroup of $Q$ with $|N|=4$. Then $N$ is abelian, and $|\operatorname{Aut}(N)|=2$ or 6 , so a Sylow 2-subgroup of $\operatorname{Aut}(N)$ has order 2. Since $N$ is abelian, an element of $Q / N$ acts in a well-defined way by conjugation on $N$, giving us a homomorphism $\phi: Q / N \rightarrow \operatorname{Aut}(N)$. Then $|\operatorname{ker}(\phi)|=\frac{|Q / N|}{|\phi(Q / N)|} \geq \frac{8}{2}=4$, so let $y \in Q$ be chosen so that $y N$ is an element of order 2 in $\operatorname{ker}(\phi)$. Then $A=N \cup y N$ is an abelian subgroup of order 8 in $L$, and $G$ has an abelian subgroup isomorphic to $P \times A$, which has index 12. This proves $G$ does not have an irreducible 17-dimensional representation in this case.

So now let $K$ be a subgroup of index 2 in $G$, and let $\chi$ be the character of an irreducible 17 -dimensional representation of $G$. We consider cases depending on whether or not $\chi$ vanishes outside of $K$. From Theorem 20.12 of James and Liebeck, we learn:
If $\chi(g) \neq 0$ for some $g \in G \backslash K$, then the restriction $\chi \downarrow K$ is irreducible. This is a contradiction because $|K|=816$ and any group of order 816 has an abelian subgroup of index 16 , which rules out the existence of an irreducible character of degree 17 .
If $\chi(g)=0$ for all $g \in G \backslash K$, then the restriction $\chi \downarrow K$ is reducible. Moreover, $\chi=\alpha+\beta$, where $\alpha(1)=\beta(1)$. This gives a contradiction because $\chi(1)=17$ is odd.

## 3 Order 612

Theorem I. f $|G|=612$, then $G$ does not have an irreducible 17-dimensional complex representation.

Proof. The only divisors $d$ of $\frac{612}{17}=36$ satisfying $d \equiv 1(\bmod 17)$ are $d=1$ and 18 , so the number of Sylow 17 -subgroups of $G$ is either 1 or 18 .
If $G$ has just one Sylow 17-subgroup $P$, then a Sylow 3-subgroup of $G / P$ lifts to an abelian subgroup of index 4 in $G$, preventing $G$ from having an irreducible representation of dimension 17.
Now we wish to show that assuming $G$ has 18 Sylow 17 -subgroups leads to a contradiction:
If $G$ has 18 Sylow 17 -subgroups, $G$ acts transitively on them by conjugation. Also, any one of them acts without fixed points on the others, so any one of them acts via a 17-cycle on the others. This means $G$ acts doubly transitively, and therefore primitively, on its Sylow 17 -subgroups by conjugation. Then a Sylow 17 -subgroup normalizer is a maximal subgroup of index 18 in $G$. Since 18 is not a power of a prime, this implies $G$ is not solvable.
By how many permutations does $G$ act on its Sylow 17 -subgroups? Since $G$ acts doubly transitively, this number is a multiple of $18 \cdot 17=306$. But any group of order 306 is solvable, so this number must be 612 and $G$ must act faithfully. So we regard $G$ as a permutation group on 18 points.

A Sylow 17 -subgroup normalizer in $G$ is a group of order 34 that acts faithfully on 17 points, so it must be dihedral. Then any 2 -point stabilizer in $G$ has a unique element of order 2, which is a disjoint product of 82 -cycles. Also, no element of $G$, except the identity, has more than 2 fixed points.
$G$ has no derangements of order 2: a derangement of order 2 would be the product of 9 transpositions, so it would be an odd permutation. But $G$ has no subgroup of index 2 because $G$ is unsolvable but all groups of order 306 are solvable.
Since $G$ has no subgroup of index $2, G$ can't have a cyclic Sylow 2-subgroup. Therefore $G$ has no elements of order 4.
Then the number of solutions to $x^{4}=1$ in $G$ is $1+\binom{18}{2}=154$, but 154 is not a multiple of 4. This contradicts Theorem 9.1.2 from Hall, and the contradiction is established.

In fact, the above reasoning shows that any group of order 612 has a unique, and therefore normal, Sylow 17-subgroup. Since all groups of order 36 are solvable, this establishes that all groups of order 612 are solvable.

## 4 Order 1224

Theorem I. f $|G|=1224$, then $G$ does not have an irreducible 17-dimensional complex representation.

Proof. The only divisors $d$ of $\frac{1224}{17}=72$ satisfying $d \equiv 1(\bmod 17)$ are $d=1$ and 18 , so the number of Sylow 17 -subgroups of $G$ is either 1 or 18.
If $G$ has just one Sylow 17-subgroup $P$, then a Sylow 3-subgroup of $G / P$ lifts to an abelian subgroup of index 8 in $G$, preventing $G$ from having an irreducible representation of dimension 17.
Now we wish to show that assuming $G$ has 18 Sylow 17 -subgroups leads to a contradiction:
If $G$ has 18 Sylow 17-subgroups, $G$ acts doubly transitively on them by conjugation, as before. As before, this implies $G$ is unsolvable.
By how many permutations does $G$ act on its Sylow 17 -subgroups? Since $G$ acts doubly transitively, this number is a multiple of 306. Also, this number must divide $|G|=1224$, so it must be 306,612 , or 1224 . It cannot be 306 or 612 because all groups of those orders are solvable. Therefore this number must be 1224 and $G$ must act faithfully. So we regard $G$ as a permutation group on 18 points.
A Sylow 17 -subgroup normalizer in $G$ is a group of order 68 that acts faithfully on 17 points, so it must be isomorphic to a subgroup of index 4 in $A G L_{1}(17)$. Then any 2 -point stabilizer in $G$ has a unique element of order 2 (a disjoint product of 82 -cycles), and two elements of order 4 (each of which is a disjoint product of 44 -cycles). Also, no element of $G$, except the identity, has more than 2 fixed points.
$G$ has no derangements of order 2 , as before.
$G$ has no elements of order 8, since then $G$ would have cyclic Sylow 2-subgroups. If $G$ had a subgroup of index 2, that subgroup would have order 612 and therefore be solvable, contradicting the unsolvability of $G$.
$G$ has no derangements of order 4:
Every cycle of a derangement $x$ of order 4 has length 2 or 4 . The points in a 4 -cycle of $x$ are those which are in 2 -cycles of $x^{2}$. Since every element of order 2 in $G$ is a disjoint product of 82 -cycles, there are 16 such points. Then the only possible cycle structure for a derangement of order 4 in $G$ is $(4,4,4,4,2)$. But any permutation with that cycle structure is an odd permutation, whose presence in $G$ would contradict the unsolvability of $G$.
Therefore all elements of order 2 or 4 in $G$ have exactly 2 fixed points. Then the total number of solutions to $x^{8}=1$ in $G$ is $1+\binom{18}{2}+2\binom{18}{2}=460$, which is not a multiple of 8 . This contradicts Theorem 9.1.2 of the Hall reference, and establishes the desired contradiction.

