login
T(n,k)=Equals two maps: number of nXk binary arrays indicating the locations of corresponding elements equal to exactly two of their king-move neighbors in a random 0..3 nXk array
3

%I #3 Dec 11 2012 07:44:04

%S 1,1,1,2,5,2,4,24,24,4,7,89,355,89,7,12,389,3281,3281,389,12,21,1570,

%T 28993,60003,28993,1570,21,37,6413,242224,1022813,1022813,242224,6413,

%U 37,65,25744,1973258,16673578

%N T(n,k)=Equals two maps: number of nXk binary arrays indicating the locations of corresponding elements equal to exactly two of their king-move neighbors in a random 0..3 nXk array

%C Table starts

%C ..1....1......2.......4.......7.......12......21....37.65

%C ..1....5.....24......89.....389.....1570....6413.25744

%C ..2...24....355....3281...28993...242224.1973258

%C ..4...89...3281...60003.1022813.16673578

%C ..7..389..28993.1022813

%C .12.1570.242224

%C .21.6413

%C .37

%e Some solutions for n=3 k=4

%e ..0..1..1..0....0..0..0..0....0..0..1..1....0..0..0..1....1..1..1..0

%e ..0..1..1..0....0..0..1..0....1..0..1..1....1..1..0..0....0..0..0..0

%e ..0..1..1..1....0..0..1..1....1..1..1..1....1..1..0..1....1..1..0..1

%Y Column 1 is A005251(n+1)

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_ Dec 11 2012