%I #4 Dec 08 2012 14:21:25
%S 1,1,1,2,5,2,4,18,18,4,7,37,143,37,7,12,85,816,816,85,12,21,184,4467,
%T 7140,4467,184,21,37,393,27192,64258,64258,27192,393,37,65,826,158296,
%U 660677,942945,660677,158296,826,65,114,1726,915920,6228324,16925474
%N T(n,k)=Equals two maps: number of nXk binary arrays indicating the locations of corresponding elements equal to exactly two of their king-move neighbors in a random 0..1 nXk array
%C Table starts
%C ...1....1.......2........4.........7........12........21.......37........65
%C ...1....5......18.......37........85.......184.......393......826......1726
%C ...2...18.....143......816......4467.....27192....158296...915920...5443662
%C ...4...37.....816.....7140.....64258....660677...6228324.59704733.580593280
%C ...7...85....4467....64258....942945..16925474.267978208
%C ..12..184...27192...660677..16925474.535851061
%C ..21..393..158296..6228324.267978208
%C ..37..826..915920.59704733
%C ..65.1726.5443662
%C .114.3568
%C .200
%H R. H. Hardin, <a href="/A220247/b220247.txt">Table of n, a(n) for n = 1..70</a>
%e Some solutions for n=3 k=4
%e ..1..1..0..0....0..0..1..0....0..1..0..0....1..0..1..0....0..0..1..1
%e ..1..0..0..0....0..0..1..0....0..0..1..1....0..1..0..0....0..0..0..0
%e ..1..0..1..0....0..0..0..1....0..0..0..0....0..1..0..0....0..1..0..1
%Y Column 1 is A005251(n+1)
%K nonn,tabl
%O 1,4
%A _R. H. Hardin_ Dec 08 2012