%I
%S 10,13,25,50,90,152,249,397,618,941,1403,2050,2938,4134,5717,7779,
%T 10426,13779,17975,23168,29530,37252,46545,57641,70794,86281,104403,
%U 125486,149882,177970,210157,246879,288602,335823,389071,448908,515930,590768
%N Number of 2 X n arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 2 X n array.
%C Row 2 of A220044.
%H R. H. Hardin, <a href="/A220045/b220045.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/120)*n^5  (1/24)*n^4 + (5/24)*n^3 + (109/24)*n^2  (1063/60)*n + 39 for n>4.
%F Conjectures from _Colin Barker_, Jul 30 2018: (Start)
%F G.f.: x*(10  47*x + 97*x^2  105*x^3 + 55*x^4  3*x^5  6*x^6  4*x^7 + 6*x^8  2*x^9) / (1  x)^6.
%F a(n) = 6*a(n1)  15*a(n2) + 20*a(n3)  15*a(n4) + 6*a(n5)  a(n6) for n>10.
%F (End)
%e Some solutions for n=3:
%e ..2..2..2....0..1..0....3..1..1....1..0..0....3..1..1....2..1..2....2..0..2
%e ..2..2..2....0..0..0....3..1..3....1..0..0....3..1..1....2..1..1....2..0..0
%Y Cf. A220044.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 03 2012
