login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220023 The period with which the powers of n repeat mod 1000. 1

%I #19 Jul 25 2017 02:26:39

%S 1,1,100,100,50,2,25,20,100,50,1,50,100,100,50,2,25,100,20,50,1,50,

%T 100,100,10,1,5,100,100,50,1,50,20,100,50,2,25,100,100,50,1,25,100,20,

%U 50,2,25,100,100,10,1,10,100,100,50,2,25,4,100,50,1,50,100,100

%N The period with which the powers of n repeat mod 1000.

%C a(n) will always be a divisor of Phi(1000) = 400.

%C This sequence is periodic with a period of 1000 because n^i mod 1000 = (n + 1000)^i mod 1000.

%C For the odd numbers n ending in {1, 3, 7, 9} which are coprime to 10, we can expect the powers of n mod 1000 to loop back to 1, with the value of n^a(n) mod 1000 = 1, but for the other numbers n that are not coprime to 10, they do not loop back to 1.

%C For the even numbers n ending in {2, 4, 6, 8}, n^a(n) mod 1000 = 376.

%C For the numbers n ending in 5, n^(2*i) mod 1000 = 625, for all i >= 2.

%C For the numbers n ending in 0, n^i mod 1000 = 0, for all i >= 3.

%H Vincenzo Librandi, <a href="/A220023/b220023.txt">Table of n, a(n) for n = 0..1000</a>

%e a(2) = 100 since 2^i mod 1000 = 2^(i+100) mod 1000, for all i >= 3.

%e a(3) = 100 since 3^i mod 1000 = 3^(i+100) mod 1000, for all i >= 0.

%e But a(7) = 20 since 7^i mod 1000 = 7^(i+20) mod 1000, for all i >= 0.

%t Flatten[Table[s=Table[PowerMod[n, e, 1000], {e, 2, 1000}]; Union[Differences[Position[s, s[[2]]]]], {n, 0, 40}]] (* _Vincenzo Librandi_, Jan 26 2013 *)

%o (PARI) k=1000; for(n=0, 100, x=(n^3)%k; y=(n^4)%k; z=1; while(x!=y, x=(x*n)%k; y=(y*n*n)%k; z++); print1(z", "))

%Y Cf. A173635 (period with which the powers of n repeat mod 10).

%Y Cf. A220022 (period with which the powers of n repeat mod 100).

%K nonn,base

%O 0,3

%A _V. Raman_, Dec 15 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 18:12 EDT 2024. Contains 374585 sequences. (Running on oeis4.)