The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220023 The period with which the powers of n repeat mod 1000. 1
1, 1, 100, 100, 50, 2, 25, 20, 100, 50, 1, 50, 100, 100, 50, 2, 25, 100, 20, 50, 1, 50, 100, 100, 10, 1, 5, 100, 100, 50, 1, 50, 20, 100, 50, 2, 25, 100, 100, 50, 1, 25, 100, 20, 50, 2, 25, 100, 100, 10, 1, 10, 100, 100, 50, 2, 25, 4, 100, 50, 1, 50, 100, 100 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) will always be a divisor of Phi(1000) = 400.
This sequence is periodic with a period of 1000 because n^i mod 1000 = (n + 1000)^i mod 1000.
For the odd numbers n ending in {1, 3, 7, 9} which are coprime to 10, we can expect the powers of n mod 1000 to loop back to 1, with the value of n^a(n) mod 1000 = 1, but for the other numbers n that are not coprime to 10, they do not loop back to 1.
For the even numbers n ending in {2, 4, 6, 8}, n^a(n) mod 1000 = 376.
For the numbers n ending in 5, n^(2*i) mod 1000 = 625, for all i >= 2.
For the numbers n ending in 0, n^i mod 1000 = 0, for all i >= 3.
LINKS
EXAMPLE
a(2) = 100 since 2^i mod 1000 = 2^(i+100) mod 1000, for all i >= 3.
a(3) = 100 since 3^i mod 1000 = 3^(i+100) mod 1000, for all i >= 0.
But a(7) = 20 since 7^i mod 1000 = 7^(i+20) mod 1000, for all i >= 0.
MATHEMATICA
Flatten[Table[s=Table[PowerMod[n, e, 1000], {e, 2, 1000}]; Union[Differences[Position[s, s[[2]]]]], {n, 0, 40}]] (* Vincenzo Librandi, Jan 26 2013 *)
PROG
(PARI) k=1000; for(n=0, 100, x=(n^3)%k; y=(n^4)%k; z=1; while(x!=y, x=(x*n)%k; y=(y*n*n)%k; z++); print1(z", "))
CROSSREFS
Cf. A173635 (period with which the powers of n repeat mod 10).
Cf. A220022 (period with which the powers of n repeat mod 100).
Sequence in context: A169735 A096582 A308660 * A115048 A112525 A000865
KEYWORD
nonn,base
AUTHOR
V. Raman, Dec 15 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 23:20 EDT 2024. Contains 373401 sequences. (Running on oeis4.)