The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219968 Number of tilings of a 3 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles. 2

%I

%S 1,1,1,2,3,4,8,13,19,35,58,89,154,256,405,681,1131,1822,3025,5012,

%T 8156,13465,22257,36415,59976,98961,162370,267184,440335,723521,

%U 1190237,1960146,3223045,5301876,8727650,14355677,23615683,38865307,63937660,105184761

%N Number of tilings of a 3 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

%H Alois P. Heinz, <a href="/A219968/b219968.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,3,-2,0,-1,1,0,1).

%F G.f.: -(x-1)^2*(x^2+x+1)^2 / (x^9+x^7-x^6-2*x^4+3*x^3+x-1).

%F a(n) = 1 + Sum_{i=0..n-3} a(i)*(1 + B*(B-1)) where B=floor((n-i)/3). E.g. a(7) = 1 + a(0)*3 + a(1)*3 + a(2)*1 + a(3)*1 + a(4)*1 = 13. - _Greg Dresden_ and Andrew Chang, Aug 23 2022

%e a(6) = 8, because there are 8 tilings of a 3 X 6 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:

%e ._._._._._._. ._____._._._. ._._____._._. ._._._____._.

%e | | | | | | | |_____| | | | | |_____| | | | | |_____| |

%e | | | | | | | |_____| | | | | |_____| | | | | |_____| |

%e |_|_|_|_|_|_| |_____|_|_|_| |_|_____|_|_| |_|_|_____|_|

%e ._._._._____. ._____._____. .___.___.___. ._____._____.

%e | | | |_____| |_____|_____| | | | | |_____|_____|

%e | | | |_____| |_____|_____| |___|_._|___| | | | |

%e |_|_|_|_____| |_____|_____| |_____|_____| |___|___|___|

%p gf:= -(x-1)^2*(x^2+x+1)^2 / (x^9+x^7-x^6-2*x^4+3*x^3+x-1):

%p a:= n-> coeff(series(gf, x, n+1), x, n):

%p seq(a(n), n=0..50);

%Y Column k=3 of A219967.

%K nonn,easy

%O 0,4

%A _Alois P. Heinz_, Dec 02 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 17:25 EST 2022. Contains 358668 sequences. (Running on oeis4.)