Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 05 2021 18:21:12
%S 1,1,13,60,348,1916,10668,59257,329350,1830234,10171315,56525022,
%T 314128014,1745708992,9701463927,53914132251,299618062228,
%U 1665073290365,9253344266757,51423790446062,285778433090830,1588162056821687,8825923956549044,49048479247236561
%N Number of tilings of a 6 X n rectangle using integer-sided square tiles.
%H Alois P. Heinz, <a href="/A219925/b219925.txt">Table of n, a(n) for n = 0..500</a>
%F G.f.: see Maple program.
%e a(2) = 13, because there are 13 tilings of a 6 X 2 rectangle using integer-sided square tiles:
%e ._._. .___. ._._. ._._. ._._. ._._.
%e |_|_| | | |_|_| |_|_| |_|_| |_|_|
%e |_|_| |___| | | |_|_| |_|_| |_|_|
%e |_|_| |_|_| |___| | | |_|_| |_|_|
%e |_|_| |_|_| |_|_| |___| | | |_|_|
%e |_|_| |_|_| |_|_| |_|_| |___| | |
%e |_|_| |_|_| |_|_| |_|_| |_|_| |___|
%e .___. .___. .___. ._._. ._._. ._._. .___.
%e | | | | | | |_|_| |_|_| |_|_| | |
%e |___| |___| |___| | | | | |_|_| |___|
%e | | |_|_| |_|_| |___| |___| | | | |
%e |___| | | |_|_| | | |_|_| |___| |___|
%e |_|_| |___| | | |___| | | | | | |
%e |_|_| |_|_| |___| |_|_| |___| |___| |___|
%p gf:= -(2*x^9 +3*x^8 +2*x^7 -3*x^6 -7*x^5 -4*x^4 -3*x^3 +5*x^2 +2*x -1) / (2*x^15 +7*x^14 +12*x^13 +6*x^12 -18*x^11 -13*x^10 -8*x^9 -27*x^8 -32*x^7 +x^6 +40*x^5 +34*x^4 -3*x^3 -15*x^2 -3*x +1):
%p a:= n-> coeff (series (gf, x, n+1), x, n):
%p seq (a(n), n=0..40);
%Y Column k=6 of A219924.
%Y Cf. A226549.
%K nonn,easy
%O 0,3
%A _Alois P. Heinz_, Dec 01 2012