%I
%S 4,13,51,132,277,514,881,1429,2225,3355,4927,7074,9957,13768,18733,
%T 25115,33217,43385,56011,71536,90453,113310,140713,173329,211889,
%U 257191,310103,371566,442597,524292,617829,724471,845569,982565,1136995,1310492
%N Number of 2 X n arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 2 X n array.
%C Row 2 of A219578.
%H R. H. Hardin, <a href="/A219579/b219579.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/40)*n^5  (5/24)*n^4 + (79/24)*n^3  (91/24)*n^2 + (161/60)*n  1 for n>1.
%F Conjectures from _Colin Barker_, Jul 26 2018: (Start)
%F G.f.: x*(4  11*x + 33*x^2  59*x^3 + 50*x^4  17*x^5 + 3*x^6) / (1  x)^6.
%F a(n) = 6*a(n1)  15*a(n2) + 20*a(n3)  15*a(n4) + 6*a(n5)  a(n6) for n>7.
%F (End)
%e Some solutions for n=3:
%e ..2..0..0....1..0..0....1..0..0....3..2..2....3..2..2....2..0..0....2..2..1
%e ..2..1..0....2..1..0....1..1..0....3..3..2....3..2..2....3..1..0....2..1..1
%Y Cf. A219578.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 23 2012
