login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 21*k + 1 is a square.
4

%I #66 Dec 26 2024 10:14:59

%S 0,3,8,19,23,40,55,80,88,119,144,183,195,240,275,328,344,403,448,515,

%T 535,608,663,744,768,855,920,1015,1043,1144,1219,1328,1360,1475,1560,

%U 1683,1719,1848,1943,2080,2120,2263,2368,2519,2563,2720,2835,3000,3048,3219

%N Numbers k such that 21*k + 1 is a square.

%C Equivalently, numbers in increasing order of the form m*(21*m + 2) or m*(21*m + 16) + 3, where m = 0, -1, 1, -2, 2, -3, 3, ....

%C Let F(r) = Product_{n >= 1} 1 - q^(28*n-r). The sequence terms are the exponents in the expansion of F(0)*F(3)*F(8)*F(11)*F(14)*F(17)*F(20)*F(25) = 1 - q^3 - q^8 + q^19 + q^23 - q^40 - q^55 + + - - ... (by the quintuple product identity). Cf. A204221. - _Peter Bala_, Dec 25 2024

%H Bruno Berselli, <a href="/A219391/b219391.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,2,-2,0,0,-1,1).

%F G.f.: x^2*(3 + 5*x + 11*x^2 + 4*x^3 + 11*x^4 + 5*x^5 + 3*x^6)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2).

%F a(n) = a(-n+1) = (42*n*(n-1) + 2*i^(n*(n+1))*(6*n + (-1)^n-3) + 7*(-1)^n*(2*n-1) + 11)/32, where i=sqrt(-1).

%F Sum_{n>=2} 1/a(n) = 21/4 - cot(2*Pi/21)*Pi/2 + Pi/(2*sqrt(3)) - tan(Pi/14)*Pi/2. - _Amiram Eldar_, Mar 16 2022

%p A219391:=proc(q)

%p local n;

%p for n from 1 to q do if type(sqrt(21*n+1), integer) then print(n);

%p fi; od; end:

%p A219391(1000); # _Paolo P. Lava_, Feb 19 2013

%t Select[Range[0, 3300], IntegerQ[Sqrt[21 # + 1]] &]

%t CoefficientList[Series[x (3 + 5 x + 11 x^2 + 4 x^3 + 11 x^4 + 5 x^5 + 3 x^6)/((1 + x)^2 (1 - x)^3 (1 + x^2)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Aug 18 2013 *)

%t LinearRecurrence[{1,0,0,2,-2,0,0,-1,1},{0,3,8,19,23,40,55,80,88},60] (* _Harvey P. Dale_, Oct 01 2021 *)

%o (Magma) [n: n in [0..3300] | IsSquare(21*n+1)];

%o (Magma) I:=[0,3,8,19,23,40,55,80,88]; [n le 9 select I[n] else Self(n-1)+2*Self(n-4)-2*Self(n-5)-Self(n-8)+Self(n-9): n in [1..50]]; // _Vincenzo Librandi_, Aug 18 2013

%o (Maxima) makelist((42*n*(n-1)+2*%i^(n*(n+1))*(6*n+(-1)^n-3)+7*(-1)^n*(2*n-1)+11)/32, n, 1, 50);

%Y Cf. similar sequences listed in A219257.

%Y Cf. A219721 (square roots of 21*a(n)+1).

%Y Subsequence of A047528.

%K nonn,easy,changed

%O 1,2

%A _Bruno Berselli_, Nov 20 2012