%I #16 Sep 05 2019 11:08:03
%S 0,3,4,7,11,8,29,47,23,44,199,32,521,284,46,2207,3571,118,9349,2168,
%T 244,353,600,1152,263,90484,5802,14517,19548,2570,3010349,5568,10104,
%U 63513,1022,103713,54018521,29134604,1463,4689,370248451,1799,151190,2118,787
%N Sum of prime divisors (with repetition) of Lucas(n).
%C The same as A070827 from a(2) on. - _R. J. Mathar_, Nov 16 2012
%H Amiram Eldar, <a href="/A219188/b219188.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A001414(A000032(n)). - _Amiram Eldar_, Sep 05 2019
%e a(6) = 8 because Lucas(6) = 18 = 2*3^2 and the sum of the prime divisors with repetition is 2 + 2*3 = 8.
%p A219188 := proc(n)
%p A001414(A000204(n)) ;
%p end proc:
%p seq(A219188(n),n=1..48) ; # _R. J. Mathar_, Nov 16 2012
%t f[n_] := Plus @@ Times @@@ FactorInteger@ LucasL[n]; f[1] = 0; Array[f, 60]
%Y Cf. A000204, A001414, A219187.
%K nonn
%O 1,2
%A _Michel Lagneau_, Nov 14 2012