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Outline

• Curling numbers
• Curling number conjecture
• Gijswijt’s sequence
• Sequences of 2’s and 3’s
•Enumeration of binary sequences by curling number
• Enum. of sequences of 2’s and 3’s by tail length
• Rotten sequences - do they exist?
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The Curling Number 
Conjecture
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The Curling Number Conjecture

Definition
of

Curling
Number

S = 7 5 2 2 5 2 2 5 2 2,   k = 3
                 

S

XY
Y

Y
...

cn(S) = k = 3
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The Curling Number Conjecture (continued)

Use cn to define a recurrence:

a(n) = cn( a(0), a(1), ..., a(n-1) )

The Conjecture:

1. Given any k initial terms,  a(n)=1 for some n >= k.

2. Every sequence eventually joins Gijswijt’s 
sequence G (A90822) 

Example: Start with 2 2 2 3 2 2

2 3 2 2 2 3 3 2 1 1 2 1 1 2 ...This continues
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Gijswijt’s Sequence G
Fokko v. d. Bult,  Dion Gijswijt,  John Linderman, 

N. J. A. Sloane,   Allan Wilks (J. Integer Seqs., 2007)

Start with 1, always append curling number

a(20) = 4

1 1 2

1 1 2 2 2 3

1 1 2

1 1 2 2 2 3 2

1 1 2

1 1 2 2 2 3

1 1 2

1 1 2 2 2 3 2 2 2 3 2 2 2 3 3 2

1 1 2

. . . . . .

       
a(20) = 4a(220) = 4  

a(220) = 4 (A090822)
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Gijswijt, continued
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Gijswijt, continued

Is there a 5?
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Gijswijt, continued

Is there a 5?
300,000 terms: no 5
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Gijswijt, continued

Is there a 5?
300,000 terms: no 5

terms: no 52 · 106
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Gijswijt, continued

Is there a 5?
300,000 terms: no 5

terms: no 52 · 106

10120 terms: no 5
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Gijswijt, continued

Is there a 5?
300,000 terms: no 5

terms: no 52 · 106

10120 terms: no 5

NJAS, FvdB: first 5 at about term 101023
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n− 1

...

5

4

3

2

2

Gijswijt, continued

First n appears at about term

(A90822)
(F.v.d. Bult et al.,  J. Integer Sequences, 2007)

A tower of height n-1 (conjectured)
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Blocks

Glue

. . .

Gijswijt, 
continued
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...
Tuesday, April 30, 2013



...
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Sequences of 2’s and 3’s
Start:  S = n 2’s and 3’s

 Ω(n) = max extension (or tail) before 1 appears

2323.2223.1       Ω(4)=4
222322.23222332.1         Ω(6)=8

Know Ω(n) for n up to 48, conjectured for n up to 80

Lengths 22, 48 especially good! Ω(22)=120,  Ω(48)=131.

Length 22:   23 223 223  23 2223  23 223 223

Explain!  Generalize!  More!
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Ω(n) = max tail length for any
starting sequence of n 2’s and 3’s

A217208

173
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Properties of Good Starting Sequences
Sequences S which achieve Ω(n) > Ω(n-1)

• S is unique
• S begins with 2
• S does not contain 33
•  S does not contain TTTT (including 2222)

True for n up to 48.  Assumed true for n = 49 ... 80
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Unavoidable Regularities ?
The problem:  Start with S = n 2’s and 3’s.
Repeatedly extend using curling number.

Eventually must reach state where have:
- either no final repeat:  not equal to XYY

- or equal to XYYYY

Shirshov’s Theorem,  Lyndon’s Theorem ???
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A216955
(triangle for n < 105)
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Notation
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Notation, continued
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log scale!

(base e)

Number of sequences of length 22 with 
tail lengths 0 through 120
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Number of sequences of length 32 with 
tail lengths 0 through 120

small terms here

linear scale
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For more information, see
On Curling Numbers of Integer Sequence,

B. Chaffin, J. P. Linderman, N. J. A. Sloane, A. R. Wilks,
J. Integer Sequences, Vol. 16 (2013), #13.4.3.

Many related sequences are in the OEIS:
http://oeis.org

The OEIS needs more editors!
- contact me (njasloane@gmail.com)
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