On Curling Numbers of Integer Sequences

Neil J.A. Sloane
The OEIS Foundation Highland Park, NJ USA

Based on joint work with Ben Chaffin, John Linderman and Allan Wilks (J. Integer Seqs., 2013)

Outline

-
-

.
-
-Enumeration of binary sequences by curling number

- Enum. of sequences of 2's and 3's by tail length
Rotten sequences - do they exist?

The Curling Number Conjecture

The Curling Number Conjecture

Definition
of
Curling
Number

The Curling Number Conjecture (continued)

Use cn to define a recurrence:

$$
a(n)=c n(a(0), a(I), \ldots, a(n-I))
$$

The Conjecture:
I. Given any k initial terms, $\mathrm{a}(\mathrm{n})=\mathrm{l}$ for some $\mathrm{n}>=\mathrm{k}$.
2. Every sequence eventually joins Gijswijt's sequence G (A90822)

Example: Start with 222322
This continues
23222332 | | 2 | | 2 ...

Gijswijt's Sequence G

Fokko v. d. Bult, Dion Gijswijt, John Linderman, N. J.A. Sloane, Allan Wilks (J. Integer Seqs., 2007)

Start with I, always append curling number

$$
\begin{aligned}
& 11 \underline{2} \\
& 1 \left\lvert\, \begin{array}{llll}
1 & \underline{2} & \underline{3}
\end{array}\right. \\
& 112 \\
& \text { 1 1 } 222232 \\
& \text { I } 12 \\
& \begin{array}{llllll}
1 & 1 & 2 & 2 & 2 & 3
\end{array} \\
& 112 \\
& \begin{array}{llllllllllllllll}
1 & 1 & 2 & 2 & 2 & 3 & 2 & \underline{2} & \underline{2} & \underline{3} & \underline{2} & \underline{2} & \underline{2} & \underline{3} & \underline{3} & \underline{2}
\end{array} \\
& 112 \\
& a(220)=4
\end{aligned}
$$

Gijswijt, continued

Gijswijt, continued

Is there a 5 ?

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5

Gijswijt, continued

Is there a 5 ?
300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5
NJAS, FvdB: first 5 at about term $10^{10^{23}}$

Gijswijt, continued

First n appears at about term

2

A tower of height n - I (conjectured)
(F.v.d. Bult et al., J. Integer Sequences, 2007)
(A90822)

Block: $B_{n+1}^{(1)}=B_{n}^{(1)} B_{n}^{(1)} S_{n}^{(1)}$
Glue: $S_{n}^{(1)}=$ longest run of 2's etc before the next 1 .
Just need to understand $S_{n}^{(1)}{ }^{2}$! Define $2^{\text {nd }}$ order $G_{i j s w i j t}$

$$
\begin{aligned}
& G^{(2)}:=s_{1}^{(1)} s_{2}^{(1)} s_{3}^{(1)} s_{4}^{(0)} \cdots
\end{aligned}
$$

$$
\begin{aligned}
& G^{(2)}=B_{n}^{(2)} B_{n}^{(2)} B_{n}^{(2)} S_{n}^{(2)} \cdots \forall n
\end{aligned}
$$

However!
Define $2^{\text {nd }}$ order curling number

$$
c_{n}^{(2)}(s)=\max \{2, c n(s)\}
$$

Then $G^{(2)}=$ start with 2 append $\mathrm{cn}^{(2)}$ repeat.

$$
\begin{array}{rl}
\Rightarrow \quad 222 & 3 \\
& 222 \\
222 & 3 \\
\Rightarrow \quad G^{(3)} & =5_{1}^{(2)} S_{2}^{(2)} S_{3}^{(2)} S_{4}^{(2)} \cdots \\
& =3.3 .334 \cdots \\
& =B_{n}^{(3)} B_{n}^{(3)} B_{n}^{(3)} B_{n}^{(3)} S_{n}^{(3)} \cdots
\end{array}
$$

AND SO ON !

LENGTHS OF $s_{n}^{(1)}, s_{n}^{(2)}, s_{n}^{(3)}, \cdots$

$$
\begin{array}{clllllllllllllllllll}
n & : 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & \cdots & & \\
\left|S_{n}^{(1)}\right|: 1 & 3 & 1 & 9 & 4 & 24 & 1 & 3 & 1 & 9 & 4 & 67 & 1 & 3 & 1 & 9 & \cdots & & 491579 \\
\left|S_{n}^{(2)}\right| & : 1 & 1 & 3 & 1 & 1 & 9 & 1 & 1 & 9 & 1 & 1 & 3 & 1 & 1 & 3 & 1 & 1 & 9 & \cdots
\end{array}
$$

...
Smooth first line: replace 4 by 3,$1 ; 9$ by 8,$1 ; 25$ by 24,$1 ; \ldots$
\Rightarrow Ruler sequence

$$
\begin{gathered}
1,3,1,8,1,3,1,24,1,3,1,8,1,3,1,67, \ldots \\
=\rho^{(1)}(2 \text {-adic valuation of } n) \text {, where } p^{(1)}=1,3,8,24,67,195, \ldots \\
\ldots \ldots
\end{gathered}
$$

$$
5 \text { in } G^{(2)} \text { at } n=77709404388415370160829246932345692180 .
$$

$$
5 \text { in } G^{(1)} \text { at } n=10^{10^{23.09987 \ldots}}
$$

Sequences of 2's and 3's

$$
\begin{aligned}
& \text { Start: } \mathrm{S}=\mathrm{n} \text { 2's and 3's } \\
& \Omega(\mathrm{n})=\max \text { extension (or tail) before I appears } \\
& 2323.2223 .1 \quad \Omega(4)=4 \\
& 222322.23222332 .1 \quad \Omega(6)=8
\end{aligned}
$$

Know $\Omega(\mathrm{n})$ for n up to 48 , conjectured for n up to 80
Lengths 22,48 especially good! $\quad \Omega(22)=|20, \Omega(48)=|3|$.
Length 22: 2322322323222323223223

Explain! Generalize! More!

Properties of Good Starting Sequences

 Sequences S which achieve $\Omega(n)>\Omega(n-I)$- $\quad S$ is unique
S begins with 2
S does not contain 33
- S does not contain TTTT (including 2222)

True for n up to 48. Assumed true for $n=49 . .80$

Unavoidable Regularities?

The problem: Start with S = n 2's and 3's. Repeatedly extend using curling number.

Eventually must reach state where have:

- either no final repeat: not equal to XYY
- or equal to XYYYY

Shirshov's Theorem, Lyndon's Theorem ???

CURLING NUMBERS OF BINARY SEQUENCES

$\operatorname{IF} \operatorname{cn}(s)=k$,

$$
s=x y^{k}
$$

(in many ways)
SHORTEST Y IS PRIMITIVE
AND UNIQUE

$$
\left(\neq T^{i}, i>1\right)
$$

$$
|Y|=: \pi \text { (PERIOD OF } S \text {) }
$$

$p(n, k)=\#$ primitive seqs with $\mathrm{c}_{\mathrm{n}}=k$

$$
q(n, k)=\sum_{i \leq R} p(n, i)
$$

Notation, continued
S with en k is ROBUST if no proper suffix of s^{k+1} has $\mathrm{cn}^{2} \geqslant k+1$.
Example $\quad S=32232$ (en 1) NOT ROBust:

$$
s^{2}=32232 \cdot 32232 \quad\left(c_{n}=2\right)
$$

$p^{\prime}(n, k)$: \# robust, primitive, en k

Tho 1

$$
\begin{aligned}
c(n, k) & =2 c(n-1, k) \\
+ & {[k \mid n]\left\{p^{\prime}\left(\frac{n}{k}, k-1\right)+2\left(\frac{n}{k}, k-2\right)\right\} } \\
& -[k+1 \mid n]\left\{p^{\prime}\left(\frac{n}{k+1}, k\right)+q\left(\frac{n}{k+1}, k-1\right)\right\} .
\end{aligned}
$$

In particular:

$$
c(n, 1)=2 c(n-1,1)-[2 \mid n] p^{\prime}\left(\frac{n}{2}, 1\right)
$$

Proof: S even length, en $1 \Rightarrow 25$ en 1 S odd length, on 1 :

Allan Wilks: structure of non-robust sequences of on 1

$$
\Rightarrow c(n, 1) \text { for } n \leqslant 200 .
$$

But no explicit formula.
Conjecture

$$
\lim _{n \rightarrow \infty} \frac{c(n, 1)}{2^{n}}=0.2700433 \ldots
$$

DO NOT HAVE A GOOD MODEL FOR $T(n, i)$

"2 or $3 " .596$ HEADS

2^{n} experiments, max time to first tail

$$
\approx \frac{n \log 2}{-\log \cdot 596}=1.34 n
$$

MIGHT SUGGEST $\Omega(n) \approx 1.34 n$
(Not valid of course)

DO DOUBLY ROTTEN SEQUENCES EXIST?
32323 IS ROTTEN

$$
\begin{array}{lll}
32323.23321 & \mid \text { TAIL } \mid=4 \\
232323 . \underbrace{321}_{r} & \text { |TAIL| }=2
\end{array}
$$

S IS DOUBLY ROTTEN IF
|TAI LIS| AND |TAIL SS| BOTH < |TAILS|
Conjecture: DO NOT EXIST
WOULD IMPLY $\Omega(n+1) \geqslant \Omega(n)$
(OPEN)

For more information, see
On Curling Numbers of Integer Sequence, B. Chaffin, J. P. Linderman, N. J.A. Sloane,A. R.Wilks, J. Integer Sequences,Vol. I6 (2013), \#I3.4.3.

Many related sequences are in the OEIS: http://oeis.org

The OEIS needs more editors!

- contact me (njasloane@gmail.com)

