The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218653 E.g.f. satisfies: A(x) = 1 + log(1 + x^2*A(x)^2)/x. 3

%I

%S 1,1,4,27,264,3400,54480,1045800,23412480,599157216,17258814720,

%T 552733695360,19485393903360,749871707270400,31283408387911680,

%U 1406370859616923200,67780975948945459200,3486485719168394342400,190644828634476331315200,11043310871932837194977280

%N E.g.f. satisfies: A(x) = 1 + log(1 + x^2*A(x)^2)/x.

%H Vaclav Kotesovec, <a href="/A218653/b218653.txt">Table of n, a(n) for n = 0..300</a>

%F E.g.f. satisfies: A(x - log(1+x^2)) = x/(x - log(1+x^2)).

%F E.g.f.: A(x) = (1/x)*Series_Reversion(x - log(1+x^2)).

%F a(n) = A218652(n+1)/(n+1).

%F a(n) ~ Gamma(1/3) * n^(n - 5/6) / (6^(1/6) * sqrt(Pi) * exp(n) * (1 - log(2))^(n + 2/3)). - _Vaclav Kotesovec_, Oct 07 2020

%e E.g.f: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 264*x^4/4! + 3400*x^5/5! +...

%e Related expansions:

%e A(x)^2 = 1 + 2*x + 10*x^2/2! + 78*x^3/3! + 840*x^4/4! + 11600*x^5/5! +...

%e log(1 + x^2*A(x)^2)/x = x + 4*x^2/2! + 27*x^3/3! + 264*x^4/4! + 3400*x^5/5! +...

%o (PARI) {a(n)=n!*polcoeff((1/x)*serreverse(x-log(1+x^2 +x^2*O(x^n))), n)}

%o for(n=0, 25, print1(a(n), ", "))

%Y Cf. A218652, A213641.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 03 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 22:06 EDT 2021. Contains 347576 sequences. (Running on oeis4.)