login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218622 a(n) = A183161(n) (mod 4), n>=0. 3
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 0, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 0, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 0, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Conjecture: a(n) never equals 3.

A183161(n) is defined by the convolution:

Sum_{k=0..n} A183161(n-k)*A183161(k)  =  Sum_{k=0..n} C(n+k,n-k)*C(2*n-k,k).

The g.f. F(x) of A183161 satisfies: F(x) = 1/sqrt(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..2048

EXAMPLE

Formatting the terms into groups of 8 reveals complex binary patterns:

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 0,0,0,0,0,0,0,0,

2,2,2,0,2,2,0,0, 2,2,2,0,0,0,0,0, 2,2,2,0,2,2,0,0, 2,2,2,0,2,2,2,2,

1,1,1,2,1,1,2,2, 1,1,1,0,2,2,2,2, 1,1,1,2,1,1,0,0, 2,2,2,0,2,2,2,2, ...

PROG

(PARI) {a(n)=local(A2=sum(m=0, n, sum(k=0, m, binomial(m+k, m-k)*binomial(2*m-k, k))*x^m+x*O(x^n))); polcoeff(A2^(1/2), n)%4}

(PARI) {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(1/sqrt(1-2*x*G^2-3*x^2*G^4), n)%4}

(PARI) /* Using Central Trinomial Coefficients A002426: */

{A002426(n)=sum(k=0, n\2, binomial(n, 2*k)*binomial(2*k, k))}

{a(n)=if(n==0, 1, sum(k=0, n, A002426(k)*binomial(3*n-k, n-k)*2*k/(3*n-k)))%4}

/* Format Print of a(n) into 4 columns of 8 terms each: */

for(n=0, 1024, if(n>0, if(n%32==0, print(""), if(n%8==0, print1(" ")))); print1(a(n), ", "))

CROSSREFS

Cf. A183161.

Sequence in context: A140885 A064286 A002471 * A091243 A306615 A037826

Adjacent sequences:  A218619 A218620 A218621 * A218623 A218624 A218625

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 03 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 16:24 EST 2020. Contains 332045 sequences. (Running on oeis4.)