%I #4 Oct 17 2012 19:42:12
%S 0,11,55,595,59999999999999999999995
%N Smallest palindrome which has additive persistence n.
%C The next term is too large to include.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AdditivePersistence.html">Additive Persistence</a>
%H <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%e 0 has additive persistence 0.
%e 11 -> 2 has additive persistence 1.
%e 55 -> 10 -> 1 has additive persistence 2.
%t lst = {0, 11, 55}; Do[AppendTo[lst, 6*10^(((lst[[-1]] + 5)/3 - 2)/9) - 5], {2}]; lst
%Y Cf. A031286, A006050, A002113.
%K base,nice,nonn
%O 0,2
%A _Arkadiusz Wesolowski_, Oct 17 2012