login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217589
Bit reversed 16-bit numbers.
2
0, 32768, 16384, 49152, 8192, 40960, 24576, 57344, 4096, 36864, 20480, 53248, 12288, 45056, 28672, 61440, 2048, 34816, 18432, 51200, 10240, 43008, 26624, 59392, 6144, 38912, 22528, 55296, 14336, 47104, 30720, 63488, 1024, 33792, 17408, 50176, 9216, 41984
OFFSET
0,2
COMMENTS
The 16-bit analog of the 8-bit version A160638, see there for further links and information.
An involutive (i.e., equal to its own inverse) permutation of the numbers 0,...,65535.
LINKS
FORMULA
a(a(n))=n.
a(m)+a(n)=a(m+n) whenever n & m = 0, where "&" is binary bit-AND, i.e., whenever m and n have no (1-)bits in common.
a(n) is even for all n < 2^15 = a(1) and odd for all larger n.
a(n) = floor(A030101(n+65536)/2). - Reinhard Zumkeller, Jan 12 2013
MAPLE
a:= n-> Bits[Join](ListTools[Reverse](Bits[Split](n, bits=16))):
seq(a(n), n=0..37); # Alois P. Heinz, Nov 28 2024
MATHEMATICA
Table[FromDigits[Reverse[IntegerDigits[n, 2, 16]], 2], {n, 0, 50}] (* T. D. Noe, Oct 09 2012 *)
IntegerReverse[Range[0, 127], 2, 16] (* Paolo Xausa, Nov 28 2024 *)
PROG
(PARI) a(n)=sum(i=0, 15, bittest(n, 15-i)<<i)
(Haskell)
import Data.Bits (testBit, setBit)
import Data.Word (Word16)
a217589 :: Word16 -> Word16
a217589 n = rev 0 0 where
rev 16 y = y
rev i y = rev (i + 1) (if testBit n i then setBit y (15 - i) else y)
-- Reinhard Zumkeller, Jan 12 2013
CROSSREFS
Cf. A160638.
Sequence in context: A289478 A222528 A232393 * A069276 A195235 A223335
KEYWORD
nonn,base,fini
AUTHOR
M. F. Hasler, Oct 07 2012
STATUS
approved