login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216254 Numerators of coefficients in expansion of x/((x^2+1)*arctan(x)), even powers only. 2

%I

%S 1,-2,26,-502,7102,-44834,295272982,-122850554,19437784634,

%T -83457787614326,13505836484182762,-83261125331410322,

%U 1230729837542663167546,-279990740971966317602,31893076454808467404426

%N Numerators of coefficients in expansion of x/((x^2+1)*arctan(x)), even powers only.

%C The denominators are given in A225149.

%H Vincenzo Librandi, <a href="/A216254/b216254.txt">Table of n, a(n) for n = 0..100</a>

%H D. Kruchinin and V. Kruchinin, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL18/Kruchinin/kruch9.html">A Generating Function for the Diagonal T2n,n in Triangles</a>, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.

%F a(n) = numerator((-1)^n*sum(l=0..2*n, 2^l * (sum(k=0..l, (k!*stirling2(l,k) * stirling1(l+k,l)) / (l+k)!)) * binomial(2*n,l))).

%F a(n) = numerator(b(n)), where b(n) = (-1)^n*(1-1/(2*n+1)-sum(i=1..n-1, b(i)*(-1)^i/(2*(n-i)+1))), b(0)=1. [_Vladimir Kruchinin_, Aug 29 2013]

%e x/((x^2+1)*atan(x)) = 1 - 2/3*x^2 + 26/45*x^4 - 502/945*x^6 + 7102/14175*x^8 - 44834/93555*x^10 + 295272982/638512875*x^12 - 122850554/273648375*x^14 + ...

%t a[n_] := (-1)^n*Sum[2^l*(Sum[(k!*StirlingS2[l, k]*StirlingS1[l+k, l])/(l+k)!, {k, 0, l}])* Binomial[2*n, l], {l, 0, 2*n}]; Table[a[n] // Numerator, {n, 0, 14}] (* _Jean-Fran├žois Alcover_, Apr 30 2013, translated from Maxima *)

%t Take[CoefficientList[Series[x/((x^2+1)ArcTan[x]),{x,0,30}],x],{1,-1,2}]//Numerator (* _Harvey P. Dale_, Dec 26 2019 *)

%o (Maxima) a(n):=(-1)^n*sum(2^l*(sum((k!*stirling2(l,k) * stirling1(l+k,l))/(l+k)!,k,0,l)) * binomial(2*n,l),l,0,2*n).

%o (PARI) x='x+O('x^66); v=Vec(x/((x^2+1)*atan(x))); vector(#v\2,n,numerator(v[2*n-1])) \\ _Joerg Arndt_, Apr 29 2013

%K sign,frac

%O 0,2

%A _Vladimir Kruchinin_, Mar 15 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 04:27 EST 2020. Contains 331133 sequences. (Running on oeis4.)