login
a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18.
11

%I #29 Sep 08 2022 08:46:03

%S 3,-6,18,-63,234,-891,3429,-13257,51354,-199098,772173,-2995218,

%T 11619045,-45073827,174857211,-678335958,2631522330,-10208681991,

%U 39603398850,-153636822171,596016389349,-2312177133105,8969825761002

%N a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18.

%C The Berndt-type sequence number 2 for the argument 2Pi/9 . Similarly like the respective sequence number 1 -- see A215455 -- the sequence a(n) is connected with the following general recurrence relation: X(n+3) + 6*X(n+2) + 9*X(n+1) + ((2*cos(3*g))^2)*X(n) = 0, X(0)=3, X(1)=-6, X(2)=18. The Binet formula for this one has the form: X(n) = (-4)^n*((cos(g))^(2*n) + cos(g+Pi/3))^(2*n) + cos(g-Pi/3))^(2*n)) - for details see Witula-Slota's reference and comments to A215455.

%C The characteristic polynomial of a(n) has the form x^3 + 6*x^2 + 9*x + 3 = (x + (2*cos(Pi/18))^2)*(x+(2*cos(5*Pi/18))^2)*(x+(2*cos(7*Pi/18))^2). We note that (2*cos(Pi/18))^2 = 2 - c(4), (2*cos(5*Pi/18))^2 = 2 - c(2), and (2*cos(7*Pi/18))^2 = 2 - c(1), where c(j) = 2*cos(2*Pi*j/9) - see trigonometric relations for A215455. Furthermore all numbers a(n)*3^(-ceiling((n+1)/3)) are integers.

%D R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

%H Vincenzo Librandi, <a href="/A215634/b215634.txt">Table of n, a(n) for n = 0..1000</a>

%H R. Witula, D. Slota, <a href="https://doi.org/10.1016/j.jmaa.2005.12.020">On modified Chebyshev polynomials</a>, J. Math. Anal. Appl., 324 (2006), 321-343.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-6,-9,-3).

%F a(n) = (-4)^n*((cos(Pi/18))^(2*n) + (cos(5*Pi/18))^(2*n) + (cos(7*Pi/18))^(2*n)).

%F G.f.: (3 + 12*x + 9*x^2)/(1 + 6*x + 9*x^2 + 3*x^3).

%F a(n)*(-1)^n = s(1)^(2*n) + s(2)^(2*n) + s(4)^(2*n), where s(j) := 2*sin(2*Pi*j/9) -- for the proof see Witula's book. The respective sums with odd powers of sines in A216757 are given. - _Roman Witula_, Sep 15 2012

%t LinearRecurrence[{-6,-9,-3}, {3,-6,18}, 50]

%t CoefficientList[Series[(3 + 12 x + 9 x^2)/(1 + 6 x + 9 x^2 + 3 x^3), {x, 0, 33}], x] (* _Vincenzo Librandi_, Aug 30 2017 *)

%o (PARI) Vec((3+12*x+9*x^2)/(1+6*x+9*x^2+3*x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012

%o (Magma) I:=[3,-6,18]; [n le 3 select I[n] else -6*Self(n-1)-9*Self(n-2)-3*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Aug 30 2017

%Y Cf. A215455, A215635, A215636, A215664, A215885, A215665, A215666, A215829, A215831, A215917, A215919, A215945, A216034, A215948, A216757.

%K sign,easy

%O 0,1

%A _Roman Witula_, Aug 18 2012