|
|
A215616
|
|
From Wendt's determinant compute (-A048954(2*n)/3)^(1/3).
|
|
3
|
|
|
1, 5, 0, 765, 41261, 0, 1175731456, 804611664045, 0, 4133434158867578125, 36792671310208420147421, 0, 33666995638445382179718361163901, 3930778415673723952392425569428439040, 0, 637350736211692642266912139961455499346709367565
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
It is known that 3 divides A048954(2*n). It is conjectured that the quotient is a perfect cube.
See A048954 for additional comments, references, links, and cross-references.
|
|
LINKS
|
Table of n, a(n) for n=1..16.
Gerard P. Michon, Factorization of Wendt's Determinant(see Remarks and Conjectures).
|
|
FORMULA
|
a(n) = (-A048954(2*n)/3)^(1/3).
a(n) = 0 if and only if n is divisible by 3.
|
|
MATHEMATICA
|
w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[(-w[2 n]/3)^(1/3), {n, 19}]
|
|
CROSSREFS
|
Cf. A048954, A215615.
Sequence in context: A164555 A176327 A226156 * A249737 A129205 A327581
Adjacent sequences: A215613 A215614 A215615 * A215617 A215618 A215619
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jonathan Sondow, Aug 17 2012
|
|
STATUS
|
approved
|
|
|
|