%I
%S 0,30,440,2898,11756,36864,95832,219092,452368,864810,1551080,2642774,
%T 4310012,6776612,10320160,15292160,22115896,31311374,43491392,
%U 59391706,79863756,105911744,138681424,179503444,229878952,291529666,366378408
%N Number of arrays of 6 0..n integers with no sum of consecutive elements equal to a disjoint adjacent sum of an equal number of elements
%C Row 6 of A215190
%H R. H. Hardin, <a href="/A215193/b215193.txt">Table of n, a(n) for n = 1..135</a>
%F Empirical: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -2*a(n-4) -2*a(n-5) +5*a(n-6) +2*a(n-7) -2*a(n-9) -5*a(n-10) +2*a(n-11) +2*a(n-12) +2*a(n-13) -a(n-14) -2*a(n-15) +a(n-16)
%e Some solutions for n=6
%e ..4....4....4....4....1....6....6....4....1....4....6....6....0....1....1....0
%e ..3....0....5....3....4....0....0....2....4....5....5....3....2....0....0....3
%e ..2....6....2....2....5....1....3....1....3....1....1....6....5....6....1....0
%e ..3....1....4....4....1....3....6....3....5....5....2....4....6....0....5....4
%e ..6....3....0....0....3....2....1....4....3....0....3....1....5....5....6....5
%e ..4....5....4....3....2....0....4....2....4....3....2....5....2....3....3....4
%K nonn
%O 1,2
%A _R. H. Hardin_ Aug 05 2012
|