%I #30 Sep 27 2019 13:23:36
%S 0,0,1,0,0,1,2,0,0,1,0,0,1,2,3,0,0,1,0,0,1,2,0,0,1,0,0,1,2,3,4,0,0,1,
%T 0,0,1,2,0,0,1,0,0,1,2,3,0,0,1,0,0,1,2,0,0,1,0,0,1,2,3,4,5,0,0,1,0,0,
%U 1,2,0,0,1,0,0,1,2,3,0,0,1,0,0,1,2,0,0,1,0,0,1,2,3,4,0,0,1,0,0,1,2,0,0,1,0,0,1,2,3,0,0,1,0,0,1,2,0,0,1
%N a(n) = log_2( A182105(n) ).
%C Apparently the leftmost positions of change with incrementing skew-binary numbers (A169683), see example. - _Joerg Arndt_, May 27 2016
%C Irregular table read by rows, where the k-th row counts from 0 up to the ruler function of k, A007814(k). - _Allan C. Wechsler_, Sep 26 2019
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Skew_binary_number_system">Skew binary number system</a>
%F a(n) = A082850(n) - 1. - _Omar E. Pol_, Jun 18 2019
%e From _Joerg Arndt_, May 27 2016: (Start)
%e The first nonnegative skew-binary numbers (dots denote zeros) are
%e n : [skew-binary] position of change
%e 00: [ . . . . . ] -
%e 01: [ . . . . 1 ] 0
%e 02: [ . . . . 2 ] 0
%e 03: [ . . . 1 . ] 1
%e 04: [ . . . 1 1 ] 0
%e 05: [ . . . 1 2 ] 0
%e 06: [ . . . 2 . ] 1
%e 07: [ . . 1 . . ] 2
%e 08: [ . . 1 . 1 ] 0
%e 09: [ . . 1 . 2 ] 0
%e 10: [ . . 1 1 . ] 1
%e 11: [ . . 1 1 1 ] 0
%e 12: [ . . 1 1 2 ] 0
%e 13: [ . . 1 2 . ] 1
%e 14: [ . . 2 . . ] 2
%e 15: [ . 1 . . . ] 3
%e 16: [ . 1 . . 1 ] 0
%e 17: [ . 1 . . 2 ] 0
%e 18: [ . 1 . 1 . ] 1
%e 19: [ . 1 . 1 1 ] 0
%e 20: [ . 1 . 1 2 ] 0
%e 21: [ . 1 . 2 . ] 1
%e 22: [ . 1 1 . . ] 2
%e 23: [ . 1 1 . 1 ] 0
%e 24: [ . 1 1 . 2 ] 0
%e 25: [ . 1 1 1 . ] 1
%e 26: [ . 1 1 1 1 ] 0
%e 27: [ . 1 1 1 2 ] 0
%e 28: [ . 1 1 2 . ] 1
%e 29: [ . 1 2 . . ] 2
%e 30: [ . 2 . . . ] 3
%e 31: [ 1 . . . . ] 4
%e 32: [ 1 . . . 1 ] 0
%e 33: [ 1 . . . 2 ] 0
%e ...
%e (End)
%e From _Allan C. Wechsler_, Sep 27 2019 (Start)
%e First few rows of irregular table derived from A007814 (see comments).
%e 0
%e 0 1
%e 0
%e 0 1 2
%e 0
%e 0 1
%e 0
%e 0 1 2 3
%e 0
%e 0 1
%e ...
%e (End)
%Y Cf. A182105, A082850, A007814.
%K nonn
%O 1,7
%A _N. J. A. Sloane_, Aug 01 2012